Toews DPL, Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol. 2012;21:3907–30. https://doi.org/10.1111/j.1365-294X.2012.05664.x.
Article
CAS
PubMed
Google Scholar
Després L. One, two or more species? Mitonuclear discordance and species delimitation. Mol Ecol. 2019;28:3845–7. https://doi.org/10.1111/mec.15211.
Article
PubMed
Google Scholar
Wüster W, Kaiser H, Hoogmoed MS, Ceríaco LMP, Dirksen L, Dufresnes C, et al. How not to describe a species: lessons from a tangle of anacondas (Boidae: Eunectes Wagler, 1830). Zool J Linn Soc. 2024;201:zlae099. https://doi.org/10.1093/zoolinnean/zlae099.
Article
Google Scholar
Funk DJ, Omland KE. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst. 2003;34:397–423. https://doi.org/10.1146/annurev.ecolsys.34.011802.132421.
Article
Google Scholar
Ballard JWO, Whitlock MC. The incomplete natural history of mitochondria. Mol Ecol. 2004;13:729–44. https://doi.org/10.1046/j.1365-294X.2003.02063.x.
Article
PubMed
Google Scholar
Hurst GD, Jiggins FM. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc R Soc Lond B Biol Sci. 2005;272:1525–34. https://doi.org/10.1098/rspb.2005.3056.
Article
CAS
Google Scholar
Edwards SV, Potter S, Schmitt CJ, Bragg JG, Moritz C. Reticulation, divergence, and the phylogeography–phylogenetics continuum. Proc Natl Acad Sci U S A. 2016;113:8025–32. https://doi.org/10.1073/pnas.1601066113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andújar C, Arribas P, Ruiz C, Serrano J, Gómez-Zurita J. Integration of conflict into integrative taxonomy: fitting hybridization in species delimitation of Mesocarabus (Coleoptera: Carabidae). Mol Ecol. 2014;23:4344–61. https://doi.org/10.1111/mec.12793.
Article
PubMed
Google Scholar
Firneno TJ, O’Neill JR, Itgen MW, Kihneman TA, Townsend JH, Fujita MK. Delimitation despite discordance: evaluating the species limits of a confounding species complex in the face of mitonuclear discordance. Ecol Evol. 2021;11:12739–53. https://doi.org/10.1002/ece3.8018.
Article
PubMed
PubMed Central
Google Scholar
Abalde S, Crocetta F, Tenorio MJ, D’Aniello S, Fassio G, Rodríguez-Flores PC, Uribe JE, Afonso CML, Oliverio M, Zardoya R. Hidden species diversity and mito-nuclear discordance within the mediterranean cone snail, Lautoconus ventricosus. Mol Phylogenet Evol. 2023;186:107838. https://doi.org/10.1016/j.ympev.2023.107838.
Article
PubMed
Google Scholar
Duran DP, Laroche RA, Roman SJ, Godwin W, Herrmann DP, Bull E, et al. Species delimitation, discovery and conservation in a tiger beetle species complex despite discordant genetic data. Sci Rep. 2024;14:6617. https://doi.org/10.1038/s41598-024-56875-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carstens BC, Pelletier TA, Reid NM, Satler JD. How to fail at species delimitation. Mol Ecol. 2013;22:4369–83. https://doi.org/10.1111/mec.12413.
Article
PubMed
Google Scholar
Quattrini AM, Wu T, Soong K, Jeng M-S, Benayahu Y, McFadden CS. A next generation approach to species delimitation reveals the role of hybridization in a cryptic species complex of corals. BMC Evol Biol. 2019;19:116. https://doi.org/10.1186/s12862-019-1427-y.
Article
PubMed
PubMed Central
Google Scholar
Dowling TE, Secor CL. The role of hybridization and introgression in the diversification of animals. Annu Rev Ecol Syst. 1997;28:593–619. https://doi.org/10.1146/annurev.ecolsys.28.1.593.
Article
Google Scholar
Tovar-Sánchez E, Oyama K. Natural hybridization and hybrid zones between Quercus crassifolia and Quercus crassipes (Fagaceae) in Mexico: morphological and molecular evidence. Am J Bot. 2004;91:1352–63. https://doi.org/10.3732/ajb.91.9.1352.
Article
Google Scholar
Renaud S, Alibert P, Auffray J-C. Modularity as a source of new morphological variation in the mandible of hybrid mice. BMC Evol Biol. 2012;12:141. https://doi.org/10.1186/1471-2148-12-141.
Article
PubMed
PubMed Central
Google Scholar
Harvati K, Ackermann RR. Merging morphological and genetic evidence to assess hybridization in western Eurasian Late Pleistocene hominins. Nat Ecol Evol. 2022;6:1573–85. https://doi.org/10.1038/s41559-022-01875-z.
Article
CAS
PubMed
Google Scholar
Freitas I, Velo-Antón G, Kaliontzopoulou A, Zuazo Ó, Martínez-Freiría F. Association between genetic admixture and morphological patterns in a hybrid zone between the two Iberian vipers, Vipera aspis and V. latastei. J Zool Syst Evol Res. 2024;2024(3800363). https://doi.org/10.1155/2024/3800363.
Hewitt GM. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc. 1996;58:247–76. https://doi.org/10.1006/bijl.1996.0035.
Article
Google Scholar
Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000;405:907–13. https://doi.org/10.1038/35016000.
Article
CAS
PubMed
Google Scholar
García-París M, Alcobendas M, Buckley D, Wake DB. Dispersal of viviparity across contact zones in Iberian populations of fire salamanders (Salamandra) inferred from discordance of genetic and morphological traits. Evolution. 2003;57:129–43. https://doi.org/10.1111/j.0014-3820.2003.tb00221.x.
Article
PubMed
Google Scholar
Schmitt T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front Zool. 2007;4. https://doi.org/10.1186/1742-9994-4-11.
Bisconti R, Porretta D, Arduino P, Nascetti G, Canestrelli D. Hybridization and extensive mitochondrial introgression among fire salamanders in peninsular Italy. Sci Rep. 2018;8:13187. https://doi.org/10.1038/s41598-018-31535-x.
Dufresnes C, Pribille M, Alard B, Gonçalves H, Amat F, Crochet P-A, Dubey S, Perrin N, Fumagalli L, Vences M, Martínez-Solano I. Integrating hybrid zone analyses in species delimitation: lessons from two anuran radiations of the western Mediterranean. Heredity. 2020;124:423–38. https://doi.org/10.1038/s41437-020-0294-z.
Gómez, A, Lunt, DH. Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. In: Weiss S, Ferrand N (eds), Phylogeography of southern European refugia. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4904-8_5.
Paulo OS, Pinheiro J, Miraldo A, Bruford MW, Jordan WC, Nichols RA. The role of vicariance vs. dispersal in shaping genetic patterns in ocellated lizard species in the western Mediterranean. Mol Ecol. 2008;17:1535–51. https://doi.org/10.1111/j.1365-294X.2008.03706.x.
Médail F, Diadema K. Glacial refugia influence plant diversity patterns in the Mediterranean basin. J Biogeogr. 2009;36:1333–45. https://doi.org/10.1111/j.1365-2699.2008.02051.x.
Article
Google Scholar
Costa GJ, Nunes VL, Marabuto E, Mendes R, Silva DN, Pons P, Bas JM, Hertach T, Paulo OS, Simões PC. The effect of the Messinian salinity crisis on the early diversification of the Tettigettalna cicadas. Zool Scr. 2023;52:100–16. https://doi.org/10.1111/zsc.12571.
Article
Google Scholar
Gvoždík V, Canestrelli D, García-París M, Moravec J, Nascetti G, Recuero E, Teixeira J, Kotlík P. Speciation history and widespread introgression in the European short-call tree frogs (Hyla arborea sensu lato, H. intermedia and H. sarda). Mol Phylogenet Evol. 2015;83:143–55. https://doi.org/10.1016/j.ympev.2014.11.012.
Bassitta M, Buades JM, Pérez-Cembranos A, Pérez‐Mellado V, Terrasa B, Brown RP, Navarro P, Lluch J, Ortega J, Castro JA, Picornell A, Ramon C. Multilocus and morphological analysis of south‐eastern Iberian wall lizards (Squamata, Podarcis). Zool Scr. 2020;49:668–83. https://doi.org/10.1111/zsc.12450.
Article
Google Scholar
Ambu J, Martínez-Solano Í, Suchan T, Hernandez A, Wielstra B, Crochet P-A, et al. Genomic phylogeography illuminates deep cyto-nuclear discordances in midwife toads (Alytes). Mol Phylogenet Evol. 2023;183:107783. https://doi.org/10.1016/j.ympev.2023.107783.
Article
CAS
PubMed
Google Scholar
Benson RH, Rakic-El Bied K, Bonaduce G. An important current reversal (influx) in the Rifian corridor (Morocco) at the Tortonian‐Messinian boundary: the end of Tethys Ocean. Paleoceanography. 1991;6:165–92. https://doi.org/10.1029/90PA00756.
Article
Google Scholar
Sousa P, Harris DJ, Froufe E, van der Meijden A. Phylogeographic patterns of Buthus scorpions (Scorpiones: Buthidae) in the Maghreb and south-western Europe based on CO1 mtDNA sequences. J Zool. 2012;288:66–75. https://doi.org/10.1111/j.1469-7998.2012.00925.x.
Article
Google Scholar
Sousa P. Resilient arthropods: Buthus scorpions as a model to understand the role of past and future climatic changes on Iberian biodiversity. Ph.D. Dissertation, Universidade do Porto (Portugal). 2017. https://repositorio-aberto.up.pt/handle/10216/106183.
Klesser R, Husemann M, Schmitt T, Sousa P, Moussi A, Habel JC. Molecular biogeography of the Mediterranean Buthus species complex (Scorpiones: Buthidae) at its southern Palaearctic margin. Biol J Linn Soc. 2021;133:166–78. https://doi.org/10.1093/biolinnean/blab014.
Article
Google Scholar
Arntzen JW, García-París M. Morphological and allozyme studies of midwife toads (genus Alytes), including the description of two new taxa from Spain. Bijdr Dierkd. 1995;65:5–34. https://doi.org/10.1163/26660644-06501002.
Article
Google Scholar
Kindler C, de Pous P, Carranza S, Beddek M, Geniez P, Fritz U. Phylogeography of the Ibero-Maghrebian red-eyed grass snake (Natrix astreptophora). Org Divers Evol. 2018;18:143–50. https://doi.org/10.1007/s13127-017-0354-2.
Article
Google Scholar
Gantenbein B, Largiadèr CR. The phylogeographic importance of the Strait of Gibraltar as a gene flow barrier in terrestrial arthropods: a case study with the scorpion Buthus occitanus as model organism. Mol Phylogenet Evol. 2003;28:119–30. https://doi.org/10.1016/S1055-7903(03)00031-9.
Article
CAS
PubMed
Google Scholar
Gantenbein B. The genetic population structure of Buthus occitanus (Scorpiones: Buthidae) across the Strait of Gibraltar: calibrating a molecular clock using nuclear allozyme variation. Biol J Linn Soc. 2004;81:519–34. https://doi.org/10.1111/j.1095-8312.2003.00295.x.
Article
Google Scholar
Gantenbein B, Fet V, Gantenbein-Ritter IA, Balloux F. Evidence for recombination in scorpion mitochondrial DNA (Scorpiones: Buthidae). Proc R Soc B Biol Sci. 2005;272:697–704. https://doi.org/10.1098/rspb.2004.3017.
Article
CAS
Google Scholar
Habel JC, Husemann M, Schmitt T, Zachos FE, Honnen A-C, Petersen B, et al. Microallopatry caused strong diversification in Buthus scorpions (Scorpiones: Buthidae) in the Atlas Mountains (NW Africa). PLoS One. 2012;7:e29403. https://doi.org/10.1371/journal.pone.0029403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pedroso D, Sousa P, Harris DJ, Van der Meijden A. Phylogeography of Buthus Leach, 1815 (Scorpiones: Buthidae): a multigene molecular approach reveals a further complex evolutionary history in the Maghreb. Afr Zool. 2013;48:298–308. https://doi.org/10.3377/004.048.0216.
Article
Google Scholar
Blasco-Aróstegui J, Simone Y, Prendini L. Systematic revision of the European species of Buthus Leach, 1815 (Scorpiones: Buthidae). Bull Am Mus Nat Hist. 2025;476:1–131. https://doi.org/10.1206/0003-0090.476.1.1.
Sánchez-Piñero F, Urbano-Tenorio F. Watch out for your neighbor: climbing onto shrubs is related to risk of cannibalism in the scorpion Buthus cf. occitanus. PLoS One. 2016;11:e0161747. https://doi.org/10.1371/journal.pone.0161747.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sánchez-Piñero F, Urbano-Tenorio F, Puerta-Rodríguez L. Foraging strategies, prey selection and size- and microhabitat-related diet variation in Buthus montanus (Scorpiones: Buthidae) in an arid area of SE Spain. J Arachnol. 2025;52:189–98. https://doi.org/10.1636/JoA-S-23-008.
Article
Google Scholar
Tuzet O. Sur La spermatogénèse de Buthus occitanus. Arch Zool Expérimentale Générale. 1938;80:335–51.
Google Scholar
Sloan DB, Havird JC, Sharbrough J. The on-again, off‐again relationship between mitochondrial genomes and species boundaries. Mol Ecol. 2017;26:2212–36. https://doi.org/10.1111/mec.13959.
Article
PubMed
PubMed Central
Google Scholar
Teruel R, Turiel C. The genus Buthus Leach, 1815 (Scorpiones: Buthidae) in the Iberian Peninsula. Part 5: A new psammophile species from northern Spain, a synonymy and first albinism record in the genus. Rev Ibérica Aracnol. 2022;41:15–36.
Google Scholar
Ythier E. The southernmost scorpion species in Europe: Buthus gabani sp. n. from Cape St. Vincent, Algarve, Portugal (Scorpiones: Buthidae). Faunitaxys. 2021;9:1–6.
Google Scholar
Ythier E. The genus Buthus Leach, 1815 (Scorpiones: Buthidae) in France with description of a new species from the eastern Pyrenees. Faunitaxys. 2021;9:1–10.
Google Scholar
Ythier E, Laborieux L. The genus Buthus Leach, 1815 (Scorpiones: Buthidae) in France with description of a new species from the Sainte-Baume Massif. Faunitaxys. 2022;10:1–13.
Google Scholar
González-Moliné A, Armas, de LF. Una especie nueva del género Buthus (Scorpiones: Buthidae) de la Provincia de Huelva, España. Rev Ibérica Arachnol. 2024;44:75–84.
Google Scholar
Sousa P, Froufe E, Alves PC, Harris DJ. Genetic diversity within scorpions of the genus Buthus from the Iberian Peninsula: mitochondrial DNA sequence data indicate additional distinct cryptic lineages. J Arachnol. 2010;38:206–11.
Article
Google Scholar
Vachon M. Études sur le scorpions. Arch l’Institut Pasteur d’Algérie. 1952;1–482.
Lourenço WR, Vachon M. Considérations sur le genre Buthus Leach, 1815 en Espagne, et description de deux nouvelles espèces (Scorpiones, Buthidae), Rev. Ibérica Aracnol. 2004;9:81–4.
Google Scholar
Lourenço WR. Une nouvelle espèce appartenant au genre Buthus Leach, 1815 (Scorpiones: Buthidae) collectée dans le Parc Naturel de la ‘Serra da Estrela’ au centre du Portugal. Faunitaxys. 2021;9:1–7.
Google Scholar
Rossi A. Notes on the distribution of the species of the genus Buthus (Leach, 1815) (Scorpiones, Buthidae) in Europe, with a description of a new species from Spain. Bull Br Arachnol Soc. 2012;15:273–9.
Google Scholar
Teruel R, Turiel C. The genus Buthus Leach, 1815 (Scorpiones: Buthidae) in the Iberian Peninsula. Part 1: four redescriptions and six new species. Rev Ibérica Arachnol. 2020;37:3–60.
Google Scholar
Teruel R, Turiel C. The genus Buthus Leach, 1815 (Scorpiones: Buthidae) in the Iberian Peninsula. Part 2: two more redescriptions. Rev Ibérica Aracnol. 2021;38:3–20.
Google Scholar
Teruel R, Turiel C. The genus Buthus Leach, 1815 (Scorpiones: Buthidae) in the Iberian Peninsula. Part 3: a new species from central Spain and new records. Rev Ibérica Aracnol. 2021;39:3–11.
Google Scholar
Teruel R, Turiel C. The genus Buthus Leach, 1815 (Scorpiones: Buthidae) in the Iberian Peninsula. Part 4: a new species from southern Spain. Rev Ibérica Aracnol. 2022;40:19–29.
Google Scholar
Sousa P, Arnedo M, Harris DJ. Updated catalogue and taxonomic notes on the Old-World scorpion genus Buthus Leach, 1815 (Scorpiones, Buthidae). ZooKeys. 2017;686:15–84. https://doi.org/10.3897/zookeys.686.12206.
Article
Google Scholar
Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. Version 3.81, (2023) http://www.mesquiteproject.org
Goloboff PA, Mattoni CI, Quinteros AS. Continuous characters analyzed as such. Cladistics. 2006;22:589–601. https://doi.org/10.1111/j.1096-0031.2006.00122.x.
Article
PubMed
Google Scholar
Hwang U-W, Kim W. General properties and phylogenetic utilities of nuclear ribosomal DNA and mitochondrial DNA commonly used in molecular systematics. Korean J Parasitol. 1999;37:215. https://doi.org/10.3347/kjp.1999.37.4.215.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bryson RW, Riddle BR, Graham MR, Smith BT, Prendini L. As old as the hills: montane scorpions in southwestern North America reveal ancient associations between biotic diversification and landscape history. PLoS ONE. 2013;8:e52822. https://doi.org/10.1371/journal.pone.0052822.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cain S, Loria SF, Ben-Shlomo R, Prendini L, Gefen E. Dated phylogeny and ancestral range estimation of sand scorpions (Buthidae: Buthacus) reveal Early Miocene divergence across land bridges connecting Africa and Asia. Mol Phylogenet Evol. 2021;164. https://doi.org/10.1016/j.ympev.2021.107212.
Loria SF, Prendini L. Burrowing into the forest: phylogeny of the Asian forest scorpions (Scorpionidae: Heterometrinae) and the evolution of ecomorphotypes. Cladistics. 2021;37:109–61. https://doi.org/10.1111/cla.12434.
Article
PubMed
Google Scholar
Loria SF, Ehrenthal VL, Nguyen AD, Prendini L. Climate relicts: Asian scorpion family Pseudochactidae survived Miocene aridification in caves of the Annamite Mountains. Insect Syst Divers. 2022;3:1–21. https://doi.org/10.1093/isd/ixac028.
Katoh K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66. https://doi.org/10.1093/nar/gkf436.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80. https://doi.org/10.1093/molbev/mst010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform. 2008;9:286–98. https://doi.org/10.1093/bib/bbn013.
Article
CAS
PubMed
Google Scholar
Vaidya G, Lohman DJ, Meier R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics. 2011;27:171–80. https://doi.org/10.1111/j.1096-0031.2010.00329.x.
Article
PubMed
Google Scholar
Tamura K, Stecher G, Kumar S. MEGA11. Molecular evolutionary genetics analysis version 11. Mol. Biol Evol. 2021;38:3022–7. https://doi.org/10.1093/molbev/msab120.
Article
CAS
Google Scholar
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4. https://doi.org/10.1093/molbev/msaa015.
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–4. https://doi.org/10.1093/bioinformatics/btg180.
Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42. https://doi.org/10.1093/sysbio/sys029.
Article
PubMed
PubMed Central
Google Scholar
Bianchini G, Sánchez-Baracaldo P. TreeViewer: flexible, modular software to visualise and manipulate phylogenetic trees. Ecol Evol. 2024;14:e10873. https://doi.org/10.1002/ece3.10873.
Article
PubMed
PubMed Central
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9. https://doi.org/10.1038/nmeth.4285.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huelsenbeck JP. Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Mol Biol Evol. 2004;21:1123–33. https://doi.org/10.1093/molbev/msh123.
Article
CAS
PubMed
Google Scholar
Lewis PO. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol. 2001;50:913–25. https://doi.org/10.1080/106351501753462876.
Article
CAS
PubMed
Google Scholar
Nixon KC, Carpenter JM. On simultaneous analysis. Cladistics. 1996;12:221–41. https://doi.org/10.1111/j.1096-0031.1996.tb00010.x.
Article
PubMed
Google Scholar
Prendini L, Crowe TM, Wheeler WC. Systematics and biogeography of the family Scorpionidae (Chelicerata: Scorpiones), with a discussion on phylogenetic methods. Invertebr Syst. 2003;17:185. https://doi.org/10.1071/IS02016.
Article
CAS
Google Scholar
De Sá RO, Grant T, Camargo A, Heyer WR, Ponssa ML, Stanley E. Systematics of the Neotropical genus Leptodactylus fitzinger, 1826 (Anura: Leptodactylidae): phylogeny, the relevance of non-molecular evidence, and species accounts. South Am J Herpetol. 2014;S100. https://doi.org/10.2994/SAJH-D-13-00022.1.
Wilson JD, Raven RJ, Schmidt DJ, Hughes JM, Rix MG. Total-evidence analysis of an undescribed fauna: resolving the evolution and classification of Australia’s golden trapdoor spiders (Idiopidae: Arbanitinae: Euoplini). Cladistics. 2020;36:543–68. https://doi.org/10.1111/cla.12415.
Article
PubMed
Google Scholar
Cain S, Gefen E, Prendini L. Systematic revision of the sand scorpions, genus Buthacus Birula, 1908 (Buthidae C.L. Koch, 1837) of the Levant, with redescription of Buthacus arenicola (Simon, 1885) from Algeria and Tunisia. Bull Am Mus Nat Hist. 2021;450(1):1–136. https://doi.org/10.1206/0003-0090.450.1.1.
Article
Google Scholar
Minh BQ, Nguyen MAT, Von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30:1188–95. https://doi.org/10.1093/molbev/mst024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35:518–22. https://doi.org/10.1093/molbev/msx281.
Article
CAS
PubMed
Google Scholar
Sankoff D, Abel Y, Hein J. A tree, a window, a hill; generalization of nearest-neighbor interchange in phylogenetic optimization. J Classif. 1994;11:209–32. https://doi.org/10.1007/BF01195680.
Article
Google Scholar
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate Maximum-Likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21. https://doi.org/10.1093/sysbio/syq010.
Article
CAS
PubMed
Google Scholar
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67. https://doi.org/10.1093/molbev/msj030.
Article
CAS
PubMed
Google Scholar
Huson DH, Bryant D. The SplitsTree app: interactive analysis and visualization using phylogenetic trees and networks. Nat Methods. 2024;21:1773–4. https://doi.org/10.1038/s41592-024-02406-3.
Article
CAS
PubMed
Google Scholar
Zhang L, Abhari N, Colijn C, Wu Y. A fast and scalable method for inferring phylogenetic networks from trees by aligning lineage taxon strings. Genome Res. 2023;33:1053–60. https://doi.org/10.1101/gr.277669.123.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Cetinkaya B, Huson DH. PhyloFusion—fast and easy fusion of rooted phylogenetic trees into rooted phylogenetic networks. Syst Biol. 2025. https://doi.org/10.1093/sysbio/syaf049.
Article
PubMed
PubMed Central
Google Scholar
Venables WN, Ripley BD. Modern applied statistics with S. 4th ed. Springer, New York; 2002.
Book
Google Scholar
Kuhn M. Building predictive models in R using the caret package. J Stat Softw. 2008;28:1–26. https://doi.org/10.18637/jss.v028.i05.
Article
Google Scholar
Raxworthy CJ, Ingram CM, Rabibisoa N, Pearson RG. Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Syst Biol. 2007;56:907–23. https://doi.org/10.1080/10635150701775111.
Article
PubMed
Google Scholar
Goodman A, Allen J, Brim J, Codella A, Hahn B, Jojo H, BondocGawa Mafla-Mills S, Bondoc Mafla ST, Oduro A, Wilson M, Ware, J. Utilization of community science data to explore habitat suitability of basal termite genera. Insect Syst Divers. 2022;6:1–15. https://doi.org/10.1093/isd/ixac019.
Article
Google Scholar
Fick SE, Hijmans RJ. Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;37:4302–15. https://doi.org/10.1002/joc.5086.
Article
Google Scholar
Moo-Llanes DA, López-Ordóñez T, Torres-Monzón JA, Mosso-González C, Casas-Martínez M, Samy AM. Assessing the potential distributions of the invasive mosquito vector Aedes albopictus and its natural Wolbachia infections in México. Insects. 2021;12:143. https://doi.org/10.3390/insects12020143.
Article
PubMed
PubMed Central
Google Scholar
Prendini L. Substratum specialization and speciation in southern African scorpions: the Effect Hypothesis revisited. In: Fet V, Seiden P, editors. Scorpions 2001. In Memoriam Gary A. Polis.: British Arachnological Society, Burnham Beeches, UK; 2001. p. 113–38.
Google Scholar
Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotićć A, et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS One. 2017;12:e0169748. https://doi.org/10.1371/journal.pone.0169748.
Brun P, Zimmermann NE, Hari C, Pellissier L, Karger DN. Global climate-related predictors at kilometer resolution for the past and future. Earth Syst Sci Data. 2022;14:5573–603. https://doi.org/10.5194/essd-14-5573-2022.
Article
Google Scholar
Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Modell. 2006;190:231–59. https://doi.org/10.1016/j.ecolmodel.2005.03.026.
Article
Google Scholar
Calatayud-Mascarell A, Alonso-Alonso P, Boratyński Z, Dippenaar-Schoeman A, Pabijan M, Salgado-Irazabal X. Hidden among the prickles: new records and updated distribution of Tmarus longicaudatus Millot, 1942 (Araneae: Thomisidae). Arachnology. 2022;19:1–6. https://doi.org/10.13156/arac.2022.19.1.1.
Sánchez‐Vialas A, Calatayud‐Mascarell A, Recuero E, Ruiz JL, García‐París M. Predictions based on phylogeography and climatic niche modelling depict an uncertain future scenario for giant blister beetles (Berberomeloe, Meloidae) facing intensive greenhouse expansion and global warming. Insect Conserv Divers. 2023;16:801–16. https://doi.org/10.1111/icad.12671.
Article
Google Scholar
Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB. Ecological niches and geographic distributions. Princeton University Press, Princeton; 2011.
Phillips S. A brief tutorial on Maxent. Lessons Conserv. 2010;3:108–35. https://doi.org/10.5531/cbc.linc.3.1.6.
Article
Google Scholar
Searcy CA, Shaffer HB. Do ecological niche models accurately identify climatic determinants of species ranges? Am Nat. 2016;187:423–35. https://doi.org/10.1086/685387.
Article
PubMed
Google Scholar
Wright K, Wright A. corrgram: plot a correlogram. Version 1.8 [R package], (2018) https://cran.r-project.org/web/packages/corrgram/i.
Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 2013;36:27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x.
Article
Google Scholar
Harrell FE. Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis, 2nd ed., Springer International Publishing, Cham. 2015. https://doi.org/10.1007/978-3-319-19425-7
Polidori C, García-Gila J, Blasco-Aróstegui J, Gil-Tapetado D. Urban areas are favouring the spread of an alien mud-dauber wasp into climatically non-optimal latitudes. Acta Oecol. 2021;110:103678. https://doi.org/10.1016/j.actao.2020.103678.
Article
Google Scholar
Gómez SR, Gil-Tapetado D, García‐Gila J, Blasco‐Aróstegui J, Polidori C. The leaf beetle Labidostomis lusitanica (Coleoptera: Chrysomelidae) as an Iberian pistachio pest: projecting risky areas. Pest Manag Sci. 2022;78:217–29. https://doi.org/10.1002/ps.6624.
Article
CAS
PubMed
Google Scholar
Oksanen J, Simpson GL, Blanchet FG, Kindt R, Legendre P, Minchin PR, et al. vegan: community ecology package. R package version 2.6–10; 2022. https://CRAN.R-project.org/package=vegan.
Goodman A, Esposito L. Niche partitioning in congeneric scorpions. Invertebr Biol. 2020;139:e12280. https://doi.org/10.1111/ivb.12280.
Article
Google Scholar
Warren DL, Matzke NJ, Cardillo M, Baumgartner JB, Beaumont LJ, Turelli M, et al. ENMtools 1.0: an R package for comparative ecological biogeography. Ecography. 2021;44:504–11. https://doi.org/10.1111/ecog.05485.
Article
Google Scholar
Wooten JA, Gibbs HL. Niche divergence and lineage diversification among closely related Sistrurus rattlesnakes. J Evol Biol. 2012;25:317–28. https://doi.org/10.1111/j.1420-9101.2011.02426.x.
Article
CAS
PubMed
Google Scholar
Van der Vaart AW. Asymptotic statistics. Cambridge University Press, Cambridge, U.K.; 1998. https://doi.org/10.1017/CBO9780511802256
Warren DL, Glor RE, Turelli M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution. 2008;62:2868–83. https://doi.org/10.1111/j.1558-5646.2008.00482.x.
Article
PubMed
Google Scholar
Barahoei H, Prendini L, Navidpour S, Tahir HM, Aliabadian M, Siahsarvie R, et al. Integrative systematics of the tooth-tailed scorpions, Odontobuthus (Buthidae), with descriptions of three new species from the Iranian Plateau. Zool J Linn Soc. 2022;195:355–98. https://doi.org/10.1093/zoolinnean/zlab030.
Article
Google Scholar
Amiri M, Prendini L, Hussen FS, Aliabadian M, Siahsarvie R, Mirshamsi O. Integrative systematics of the widespread Middle Eastern buthid scorpion, Hottentotta saulcyi (Simon, 1880), reveals a new species in Iran. Arthropod Syst Phylogeny. 2024;82:323–41. https://doi.org/10.3897/asp.82.e98662.
Article
Google Scholar
Bergsten J. A review of long-branch attraction. Cladistics. 2005;21:163–93. https://doi.org/10.1111/j.1096-0031.2005.00059.x.
Article
PubMed
Google Scholar
Yang Z, Zhu T. Bayesian selection of misspecified models is overconfident and may cause spurious posterior probabilities for phylogenetic trees. Proc Natl Acad Sci U S A. 2018;115:1854–9. https://doi.org/10.1073/pnas.1712673115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Douady CJ, Delsuc F, Boucher Y, Doolittle WF, Douzery EJP. Comparison of Bayesian and Maximum Likelihood bootstrap measures of phylogenetic reliability. Mol Biol Evol. 2003;20:248–54. https://doi.org/10.1093/molbev/msg042.
Article
CAS
PubMed
Google Scholar
Erixon P, Svennblad B, Britton T, Oxelman B. Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Syst Biol. 2003;52:665–73. https://doi.org/10.1080/10635150390235485.
Article
PubMed
Google Scholar
Irwin DE. Phylogeographic breaks without geographic barriers to gene flow. Evolution. 2002;56:2383–94. https://doi.org/10.1111/j.0014-3820.2002.tb00164.x.
Article
PubMed
Google Scholar
Avise JC. Molecular markers, natural history and evolution. Springer, New York; 1994.
Google Scholar
Gantenbein B, Largiadèr CR. Mesobuthus gibbosus (Scorpiones: Buthidae) on the island of Rhodes — hybridization between Ulysses’ stowaways and native scorpions? Mol Ecol. 2002;11:925–38. https://doi.org/10.1046/j.1365-294X.2002.01494.x.
Article
CAS
PubMed
Google Scholar
Kunerth HD, Tapisso JT, Valente R, Mathias MdaL, Alves PC, Searle JB, et al. Characterising mitochondrial capture in an Iberian shrew. Genes. 2022;13:2228. https://doi.org/10.3390/genes13122228.
Article
CAS
PubMed
PubMed Central
Google Scholar
Due D, Polis GA. The biology of Vaejovis littoralis Williams, an intertidal scorpion from Baja California, Mexico. J Zool. 1985;207:563–80. https://doi.org/10.1111/j.1469-7998.1985.tb04952.x.
Google Scholar
Starrett J, Hedin M. Multilocus genealogies reveal multiple cryptic species and biogeographical complexity in the California turret spider Antrodiaetus riversi (Mygalomorphae, Antrodiaetidae). Mol Ecol. 2007;16:583–604. https://doi.org/10.1111/j.1365-294X.2006.03164.x.
Article
PubMed
Google Scholar
Kaltsas D, Mylonas M. Locomotory activity and orientation of Mesobuthus gibbosus (Scorpiones: Buthidae) in central Aegean Archipelago. J Nat Hist. 2010;44:1445–59. https://doi.org/10.1080/00222931003632732.
Article
Google Scholar
Hedin M, Starrett J, Hayashi C. Crossing the uncrossable: novel trans-valley biogeographic patterns revealed in the genetic history of low-dispersal mygalomorph spiders (Antrodiaetidae, Antrodiaetus) from California. Mol Ecol. 2013;22:508–26. https://doi.org/10.1111/mec.12130.
Article
CAS
PubMed
Google Scholar
Hill GE, Johnson JD. The mitonuclear compatibility hypothesis of sexual selection. Proc Biol Sci. 2013;280:20131314. https://doi.org/10.1098/rspb.2013.1314.
Article
PubMed
PubMed Central
Google Scholar
Avise J, Shapira J, Daniel S, Aquadro C, Lansman R. Mitochondrial DNA differentiation during the speciation process in Peromyscus. Mol Biol Evol. 1984. https://doi.org/10.1093/oxfordjournals.molbev.a040301.
Article
Google Scholar
Pamilo P, Nei M. Relationships between gene trees and species trees. Mol Biol Evol. 1988;5:568–83. https://doi.org/10.1093/oxfordjournals.molbev.a040517.
Article
CAS
PubMed
Google Scholar
Maddison WP, Knowles LL. Inferring phylogeny despite incomplete lineage sorting. Syst Biol. 2006;55:21–30. https://doi.org/10.1080/10635150500354928.
Article
PubMed
Google Scholar
Mas-Peinado P, García-París M, Ruiz JL, Buckley D. The Strait of Gibraltar is an ineffective palaeogeographic barrier for some flightless darkling beetles (Coleoptera: Tenebrionidae: Pimelia). Zool J Linn Soc. 2022;195:1147–80. https://doi.org/10.1093/zoolinnean/zlab088.
Article
Google Scholar
Wirtz P. Mother species–father species: unidirectional hybridization in animals with female choice. Anim Behav. 1999;58:1–12. https://doi.org/10.1006/anbe.1999.1144.
Article
CAS
PubMed
Google Scholar
Polis GA. The biology of scorpions. Stanford University, Stanford, CA; 1990.
Google Scholar
McLean CJ, Garwood RJ, Brassey CA. Sexual dimorphism in the arachnid orders. PeerJ. 2018;6:e5751. https://doi.org/10.7717/peerj.5751.
Sullivan JP, Lavoué S, Arnegard ME, Hopkins CD. AFLPs resolve phylogeny and reveal mitochondrial introgression within a species flock of African electric fish (Mormyroidea: Teleostei). Evolution. 2004;58:825–41. https://doi.org/10.1111/j.0014-3820.2004.tb00415.x.
Article
CAS
PubMed
Google Scholar
Papakostas S, Michaloudi E, Proios K, Brehm M, Verhage L, Rota J, et al. Integrative taxonomy recognizes evolutionary units despite widespread mitonuclear discordance: evidence from a rotifer cryptic species complex. Syst Biol. 2016;65:508–24. https://doi.org/10.1093/sysbio/syw016.
Article
PubMed
Google Scholar
Nahon D, Trompette R. Origin of siltstones: glacial grinding versus weathering. Sedimentology. 1982;29:25–35. https://doi.org/10.1111/j.1365-3091.1982.tb01706.x.
Article
Google Scholar
Vrba ES. Evolution, species and fossils: how does life evolve? S Afr J Sci. 1980;76:61–84.
Google Scholar
Raszick TJ, Song H. The ecotype paradigm: testing the concept in an ecologically divergent grasshopper. Insect Syst Evol. 2016;47:363–87. https://doi.org/10.1163/1876312X-47032147.
Article
Google Scholar
Jiménez-Hernández VS, Villegas-Guzmán GA, Casasola-González JA, Vargas-Mendoza CF. Altitudinal distribution of alpha, beta, and gamma diversity of pseudoscorpions (Arachnida) in Oaxaca, Mexico. Acta Oecol. 2020;103:103525. https://doi.org/10.1016/j.actao.2020.103525.
Article
Google Scholar
Blasco-Aróstegui J, Prendini L. Glacial relicts? A new scorpion from Mount Olympus, Greece (Euscorpiidae: Euscorpius). Am Mus Novit. 2023;4003:1–36. https://doi.org/10.1206/4003.1
Article
Google Scholar
Lobo JM, Martín-Piera F. Searching for a predictive model for species richness of Iberian dung beetle based on spatial and environmental variables. Conserv Biol. 2002;16:158–73. https://doi.org/10.1046/j.1523-1739.2002.00211.x.
Article
PubMed
Google Scholar
Soberón J, Arroyo-Peña B. Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson. PLoS ONE. 2017;12:e0175138. https://doi.org/10.1371/journal.pone.0175138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Multigner LF, Gil-Tapetado D, Nieves-Aldrey JL, Gómez JF. The paths of the galls: differences in the ecology and distribution of two European oak gall wasps Andricus dentimitratus and Andricus pictus. J Zool Syst Evol Res. 2022;2022:1–14. https://doi.org/10.1155/2022/8488412.
Article
Google Scholar