Blog

  • Just a moment…

    Just a moment…

    Continue Reading

  • PPP, PML-N sign no-confidence motion against AJK PM as deadlock ends

    PPP, PML-N sign no-confidence motion against AJK PM as deadlock ends

    (Left to right) Rana Sanaullah, Qamar Zaman Kaira, and Ahsan Iqbal address a press conference in Islamabad on October 27, 2025. — Screengrab via Geo News 
    • New AJK premier to be announced within two days.
    • PML-N…

    Continue Reading

  • After 104 deaths, Israel says Gaza truce back on — but for how long? | World News

    After 104 deaths, Israel says Gaza truce back on — but for how long? | World News

    Mahmoud Shakshak, right, holds the bodies of his 5-year-old son, Fadi, and his 8-year-old daughter, Sara, who were killed in an Israeli army strike, at Shifa Hospital in Gaza City Wednesday, Oct. 29, 2025. (AP Photo/Yousef Al Zanoun)

    After a…

    Continue Reading

  • Trump Says South Korea Trade Deal Is Virtually Done – The Wall Street Journal

    1. Trump Says South Korea Trade Deal Is Virtually Done  The Wall Street Journal
    2. S Korea announces lowering of some tariffs as part of new US trade deal  BBC
    3. Trump and South Korea reach agreement on trade deal details as shutdown impacts widen in US  

    Continue Reading

  • Sung JH, et al. An unusual degenerative disorder of neurons associated with a novel intranuclear hyaline inclusion (neuronal intranuclear hyaline inclusion disease). A clinicopathological study of a case. J Neuropathol Exp Neurol. 1980;39(2):107–30.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sone J, et al. Clinicopathological features of adult-onset neuronal intranuclear inclusion disease. Brain. 2016;139(Pt 12):3170–86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sone J, et al. Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat Genet. 2019;51(8):1215–21.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tian Y, et al. Expansion of human-specific GGC repeat in neuronal intranuclear inclusion disease-related disorders. Am J Hum Genet. 2019;105(1):166–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun QY, et al. Expansion of GGC repeat in the human-specific NOTCH2NLC gene is associated with essential tremor. Brain. 2020;143(1):222–33.

    Article 
    PubMed 

    Google Scholar 

  • Ehrlich ME, Ellerby LM. Neuronal intranuclear inclusion disease: polyglycine protein is the culprit. Neuron. 2021;109(11):1757–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu J, et al. CGG repeat expansion in NOTCH2NLC causes mitochondrial dysfunction and progressive neurodegeneration in drosophila model. Proc Natl Acad Sci U S A. 2022;119(41):e2208649119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu Q, et al. Expression of expanded GGC repeats within NOTCH2NLC causes behavioral deficits and neurodegeneration in a mouse model of neuronal intranuclear inclusion disease. Sci Adv. 2022;8(47):eadd6391.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong S, et al. Upstream open reading frame with NOTCH2NLC GGC expansion generates polyglycine aggregates and disrupts nucleocytoplasmic transport: implications for polyglycine diseases. Acta Neuropathol. 2021;142(6):1003–23.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fan Y, et al. GGC repeat expansion in NOTCH2NLC induces dysfunction in ribosome biogenesis and translation. Brain. 2023;146(8):3373–91.

    Article 
    PubMed 

    Google Scholar 

  • Tian Y, et al. Clinical features of NOTCH2NLC-related neuronal intranuclear inclusion disease. J Neurol Neurosurg Psychiatry. 2022;93(12):1289–98.

    Article 
    PubMed 

    Google Scholar 

  • Chen H, et al. Re-defining the clinicopathological spectrum of neuronal intranuclear inclusion disease. Ann Clin Transl Neurol. 2020;7(10):1930–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tai H, et al. Clinical features and classification of neuronal intranuclear inclusion disease. Neurol Genet. 2023;9(2):e200057.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang S, et al. Generic diagramming platform (GDP): a comprehensive database of high-quality biomedical graphics. Nucleic Acids Res. 2025;53(D1):D1670–6.

    Article 
    PubMed 

    Google Scholar 

  • Pang J, et al. The value of NOTCH2NLC gene detection and skin biopsy in the diagnosis of neuronal intranuclear inclusion disease. Front Neurol. 2021;12:624321.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee HG, et al. Neuroinflammation: an astrocyte perspective. Sci Transl Med. 2023;15(721):eadi7828.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bao L et al. Immune system involvement in neuronal intranuclear inclusion disease. Neuropathol Appl Neurobiol, 2024;50(2):e12976.

  • Mori K, et al. Imaging findings and pathological correlations of subacute encephalopathy with neuronal intranuclear inclusion disease-case report. Radiol Case Rep. 2022;17(12):4481–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prinz M, Priller J. The role of peripheral immune cells in the CNS in steady state and disease. Nat Neurosci. 2017;20(2):136–44.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yoshii D, et al. An autopsy case of adult-onset neuronal intranuclear inclusion disease with perivascular preservation in cerebral white matter. Neuropathology. 2021;42(1):66–73.

    Article 
    PubMed 

    Google Scholar 

  • Tracey KJ, Cerami A. Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med. 1994;45:491–503.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117(14):3720–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu X, Hong D. Neuronal intranuclear inclusion disease: recognition and update. J Neural Transm. 2021;128(3):295–303.

    Article 
    PubMed 

    Google Scholar 

  • Bao L, et al. Utility of labial salivary gland biopsy in the histological diagnosis of neuronal intranuclear inclusion disease. Eur J Neurol. 2024;31(1):e16102.

    Article 
    PubMed 

    Google Scholar 

  • Zhong S, et al. Spatial and Temporal distribution of white matter lesions in NOTCH2NLC-Related neuronal intranuclear inclusion disease. Neurology. 2025;104(4):e213360.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Du N et al. Value of neutrophil-to-lymphocyte ratio in neuronal intranuclear inclusion disease. Heliyon, 2024;10(6):e27953.

  • Yan Y, et al. The clinical characteristics of neuronal intranuclear inclusion disease and its relation with inflammation. Neurol Sci. 2023;44(9):3189–97.

    Article 
    PubMed 

    Google Scholar 

  • Shen Y et al. uN2CpolyG-mediated p65 nuclear sequestration suppresses the NF-κB-NLRP3 pathway in neuronal intranuclear inclusion disease. Cell Communication Signal, 2025;23(1):68.

  • Tateishi J, et al. Intranuclear inclusions in muscle, nervous tissue, and adrenal gland. Acta Neuropathol. 1984;63(1):24–32.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Platero JL et al. The impact of coconut oil and Epigallocatechin gallate on the levels of IL-6, anxiety and disability in multiple sclerosis patients. Nutrients, 2020;12(2):305.

  • Casali BT, et al. Omega-3 fatty acids augment the actions of nuclear receptor agonists in a mouse model of alzheimer’s disease. J Neurosci. 2015;35(24):9173–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chauhan A, et al. Phytochemicals targeting NF-κB signaling: potential anti-cancer interventions. J Pharm Anal. 2022;12(3):394–405.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shabab T, et al. Neuroinflammation pathways: a general review. Int J Neurosci. 2017;127(7):624–33.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gleeson M, et al. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11(9):607–15.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pedersen BK. Adolph distinguished lecture: muscle as an endocrine organ: IL-6 and other myokines. J Appl Physiol (1985). 2009;107(4):1006–14. Edward F.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Steensberg A, et al. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab. 2003;285(2):E433–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ma Q. Beneficial effects of moderate voluntary physical exercise and its biological mechanisms on brain health. Neurosci Bull. 2008;24(4):265–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adlard PA, et al. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J Neurosci. 2005;25(17):4217–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Periasamy S, et al. Sleep deprivation-induced multi-organ injury: role of oxidative stress and inflammation. Excli J. 2015;14:672–83.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shearer WT, et al. Soluble TNF-alpha receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight. J Allergy Clin Immunol. 2001;107(1):165–70.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ooms S, et al. Effect of 1 night of total sleep deprivation on cerebrospinal fluid β-amyloid 42 in healthy middle-aged men: a randomized clinical trial. JAMA Neurol. 2014;71(8):971–7.

    Article 
    PubMed 

    Google Scholar 

  • Reiter RJ, et al. Brain washing and neural health: role of age, sleep, and the cerebrospinal fluid melatonin rhythm. Cell Mol Life Sci. 2023;80(4):88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao HY, et al. Chronic sleep restriction induces cognitive deficits and cortical Beta-Amyloid deposition in mice via BACE1-Antisense activation. CNS Neurosci Ther. 2017;23(3):233–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Y, et al. Quercetin ameliorates memory impairment by inhibiting abnormal microglial activation in a mouse model of Paradoxical sleep deprivation. Biochem Biophys Res Commun. 2022;632:10–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Irwin MR, et al. Tai Chi compared with cognitive behavioral therapy and the reversal of systemic, cellular and genomic markers of inflammation in breast cancer survivors with insomnia: A randomized clinical trial. Brain Behav Immun. 2024;120:159–66.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dutcher JM, et al. Smartphone mindfulness meditation training reduces Pro-inflammatory gene expression in stressed adults: A randomized controlled trial. Brain Behav Immun. 2022;103:171–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walsh E, Eisenlohr-Moul T, Baer R. Brief mindfulness training reduces salivary IL-6 and TNF-α in young women with depressive symptomatology. J Consult Clin Psychol. 2016;84(10):887–97.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patel DI, et al. Therapeutic yoga reduces pro-tumorigenic cytokines in cancer survivors. Support Care Cancer. 2022;31(1):33.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Streeter CC, et al. Effects of yoga on the autonomic nervous system, gamma-aminobutyric-acid, and allostasis in epilepsy, depression, and post-traumatic stress disorder. Med Hypotheses. 2012;78(5):571–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ozturk FO, Tezel A. Effect of laughter yoga on mental symptoms and salivary cortisol levels in first-year nursing students: A randomized controlled trial. Int J Nurs Pract. 2021;27(2):e12924.

    Article 
    PubMed 

    Google Scholar 

  • Nair RG, Vasudev MM, Mavathur R. Role of yoga and its plausible mechanism in the mitigation of DNA damage in Type-2 diabetes: A randomized clinical trial. Ann Behav Med. 2022;56(3):235–44.

    Article 
    PubMed 

    Google Scholar 

  • Chen SJ, et al. Association of fecal and plasma levels of Short-Chain fatty acids with gut microbiota and clinical severity in patients with Parkinson disease. Neurology. 2022;98(8):e848–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chakraborty P, Gamage H, Laird AS. Butyrate as a potential therapeutic agent for neurodegenerative disorders. Neurochem Int. 2024;176:105745.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li N, et al. Prebiotic inulin controls Th17 cells mediated central nervous system autoimmunity through modulating the gut microbiota and short chain fatty acids. Gut Microbes. 2024;16(1):2402547.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Y, et al. Transmission of alzheimer’s disease-associated microbiota dysbiosis and its impact on cognitive function: evidence from mice and patients. Mol Psychiatry. 2023;28(10):4421–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim MS, et al. Transfer of a healthy microbiota reduces amyloid and Tau pathology in an alzheimer’s disease animal model. Gut. 2020;69(2):283–94.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Beydoun MA, et al. Clinical and bacterial markers of periodontitis and their association with incident All-Cause and alzheimer’s disease dementia in a large National survey. J Alzheimers Dis. 2020;75(1):157–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ilievski V, et al. Chronic oral application of a periodontal pathogen results in brain inflammation, neurodegeneration and amyloid beta production in wild type mice. PLoS ONE. 2018;13(10):e0204941.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang RP, et al. IL-1β and TNF-α play an important role in modulating the risk of periodontitis and alzheimer’s disease. J Neuroinflammation. 2023;20(1):71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dominy SS, et al. Porphyromonas gingivalis in alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. 2019;5(1):eaau3333.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brettschneider J, et al. Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS ONE. 2012;7(6):e39216.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Graves MC, et al. Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells. Amyotroph Lateral Scler Other Motor Neuron Disord. 2004;5(4):213–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Henkel JS, et al. Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol. 2004;55(2):221–35.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu YH, et al. Neuronal intranuclear inclusion disease in patients with adult-onset non-vascular leukoencephalopathy. Brain. 2022;145(9):3010–21.

    Article 
    PubMed 

    Google Scholar 

  • Chen L, et al. Teaching neuroimages: the zigzag edging sign of adult-onset neuronal intranuclear inclusion disease. Neurology. 2019;92(19):e2295-6.

    Article 
    PubMed 

    Google Scholar 

  • Fragoso DC, et al. Imaging of Creutzfeldt-Jakob disease: imaging patterns and their differential diagnosis. Radiographics. 2017;37(1):234–57.

    Article 
    PubMed 

    Google Scholar 

  • Muttikkal TJ, Wintermark M. MRI patterns of global hypoxic-ischemic injury in adults. J Neuroradiol. 2013;40(3):164–71.

    Article 
    PubMed 

    Google Scholar 

  • Hasebe M, et al. Hypoglycemic encephalopathy. QJM. 2022;115(7):478–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang Z, et al. MRI features of neuronal intranuclear inclusion disease, combining visual and quantitative imaging investigations. J Neuroradiol. 2024;51(3):274–80.

    Article 
    PubMed 

    Google Scholar 

  • Okamura S, et al. A case of neuronal intranuclear inclusion disease with recurrent vomiting and without apparent DWI abnormality for the first seven years. Heliyon. 2020;6(8):e04675.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu Y, et al. Clinical and mechanism advances of neuronal intranuclear inclusion disease. Front Aging Neurosci. 2022;14:934725.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang H, et al. Clinical and pathological features in adult-onset NIID patients with cortical enhancement. J Neurol. 2020;267(11):3187–98.

    Article 
    PubMed 

    Google Scholar 

  • Shen Y, et al. Encephalitis-like episodes with cortical edema and enhancement in patients with neuronal intranuclear inclusion disease. Neurol Sci. 2024;45(9):4501–11.

    Article 
    PubMed 

    Google Scholar 

  • Jacobs AH, Tavitian B. Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab. 2012;32(7):1393–415.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Corica F et al. PET imaging of Neuro-Inflammation with tracers targeting the translocator protein (TSPO), a systematic review: from bench to bedside. Diagnostics (Basel), 2023;13(6):1029.

  • Banati RB. Visualising microglial activation in vivo. Glia. 2002;40(2):206–17.

    Article 
    PubMed 

    Google Scholar 

  • Turner MR, et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11 C](R)-PK11195 positron emission tomography study. Neurobiol Dis. 2004;15(3):601–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tondo G, et al. (11) C-PK11195 PET-based molecular study of microglia activation in SOD1 amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 2020;7(9):1513–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malpetti M, et al. Microglial activation in the frontal cortex predicts cognitive decline in frontotemporal dementia. Brain. 2023;146(8):3221–31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong S, et al. Microglia contribute to polyG-dependent neurodegeneration in neuronal intranuclear inclusion disease. Acta Neuropathol. 2024;148(1):21.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hutton BF. The origins of SPECT and SPECT/CT. Eur J Nucl Med Mol Imaging. 2014;41(Suppl 1):S3-16.

    Article 
    PubMed 

    Google Scholar 

  • Benadiba M, et al. New molecular targets for PET and SPECT imaging in neurodegenerative diseases. Braz J Psychiatry. 2012;34(Suppl 2):S125–36.

    Article 
    PubMed 

    Google Scholar 

  • Kimachi T, et al. Reversible encephalopathy with focal brain edema in patients with neuronal intranuclear inclusion disease. Neurology and Clinical Neuroscience. 2017;5(6):198–200.

    Article 

    Google Scholar 

  • Fujita K, et al. Neurologic attack and dynamic perfusion abnormality in neuronal intranuclear inclusion disease. Neurol Clin Pract. 2017;7(6):e39-42.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pan Y, et al. Expression of expanded GGC repeats within NOTCH2NLC causes cardiac dysfunction in mouse models. Cell Biosci. 2023;13(1):157.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heslegrave A, et al. Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer’s disease. Mol Neurodegener. 2016;11:3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Craig-Schapiro R, et al. YKL-40: a novel prognostic fluid biomarker for preclinical alzheimer’s disease. Biol Psychiatry. 2010;68(10):903–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crols R, et al. Increased GFAP levels in CSF as a marker of organicity in patients with Alzheimer’s disease and other types of irreversible chronic organic brain syndrome. J Neurol. 1986;233(3):157–60.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Andrés-Benito P, et al. Differential astrocyte and oligodendrocyte vulnerability in murine Creutzfeldt-Jakob disease. Prion. 2021;15(1):112–20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mussbacher M, et al. NF-κB in monocytes and macrophages – an inflammatory master regulator in multitalented immune cells. Front Immunol. 2023;14:1134661.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Biasizzo M, Kopitar-Jerala N. Interplay between NLRP3 inflammasome and autophagy. Front Immunol. 2020;11:591803.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng Q, et al. Pseudomonas aeruginosa triggers macrophage autophagy to escape intracellular killing by activation of the NLRP3 inflammasome. Infect Immun. 2016;84(1):56–66.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Geissmann F, et al. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327(5966):656–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guilliams M, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol. 2014;14(8):571–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prinz M, Jung S, Priller J. Microglia Biology: One Century Evol Concepts Cell. 2019;179(2):292–311.

    CAS 

    Google Scholar 

  • Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018;18(4):225–42.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liddelow SA, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keren-Shaul H, et al. A unique microglia type associated with restricting development of alzheimer’s disease. Cell. 2017;169(7):1276–e129017.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mathys H, et al. Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep. 2017;21(2):366–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou Y, et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat Med. 2020;26(1):131–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity. 2016;44(3):439–49.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol. 2014;5:514.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merad M, et al. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 2013;31:563–604.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun R, Jiang H. Border-associated macrophages in the central nervous system. J Neuroinflammation. 2024;21(1):67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goldmann T, et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol. 2016;17(7):797–805.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Hove H, et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat Neurosci. 2019;22(6):1021–35.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bell RD, Zlokovic BV. Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease. Acta Neuropathol. 2009;118(1):103–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faraco G, et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J Clin Invest. 2016;126(12):4674–89.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rua R, et al. Infection drives meningeal engraftment by inflammatory monocytes that impairs CNS immunity. Nat Immunol. 2019;20(4):407–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dani N, et al. A cellular and Spatial map of the choroid plexus across brain ventricles and ages. Cell. 2021;184(11):3056–e307421.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mrdjen D, et al. High-Dimensional Single-Cell mapping of central nervous system immune cells reveals distinct myeloid subsets in Health, Aging, and disease. Immunity. 2018;48(2):380–95. .e6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Park L, et al. Brain perivascular macrophages initiate the neurovascular dysfunction of Alzheimer Aβ peptides. Circ Res. 2017;121(3):258–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schläger C, et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature. 2016;530(7590):349–53.

    Article 
    PubMed 

    Google Scholar 

  • Herz J, et al. Role of neutrophils in exacerbation of brain injury after focal cerebral ischemia in hyperlipidemic mice. Stroke. 2015;46(10):2916–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9(6):653–60.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Greenberg SM, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol. 2009;8(2):165–74.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Charidimou A, Gang Q, Werring DJ. Sporadic cerebral amyloid angiopathy revisited: recent insights into pathophysiology and clinical spectrum. J Neurol Neurosurg Psychiatry. 2012;83(2):124–37.

    Article 
    PubMed 

    Google Scholar 

  • Liao YC, et al. NOTCH2NLC GGC repeat expansion in patients with vascular leukoencephalopathy. Stroke. 2023;54(5):1236–45.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bao L, et al. GGC repeat expansions in NOTCH2NLC cause uN2CpolyG cerebral amyloid angiopathy. Brain. 2025;148(2):467–79.

    Article 
    PubMed 

    Google Scholar 

  • Ryu JK, McLarnon JG. A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J Cell Mol Med. 2009;13(9a):2911–25.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shan Y, et al. The glucagon-like peptide-1 receptor agonist reduces inflammation and blood-brain barrier breakdown in an astrocyte-dependent manner in experimental stroke. J Neuroinflammation. 2019;16(1):242.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Orihara A, et al. Acute reversible encephalopathy with neuronal intranuclear inclusion disease diagnosed by a brain biopsy: inferring the mechanism of encephalopathy from radiological and histological findings. Intern Med. 2023;62(12):1821–5.

    Article 
    PubMed 

    Google Scholar 

  • Li YY, et al. Interactions between beta-Amyloid and pericytes in Alzheimer’s disease. Front Biosci (Landmark Ed). 2024;29(4):136.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang X, Hussain B, Chang J. Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms. CNS Neurosci Ther. 2021;27(1):36–47.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rahimifard M, et al. Targeting the TLR4 signaling pathway by polyphenols: a novel therapeutic strategy for neuroinflammation. Ageing Res Rev. 2017;36:11–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang M, et al. Blockage of VEGF function by bevacizumab alleviates early-stage cerebrovascular dysfunction and improves cognitive function in a mouse model of Alzheimer’s disease. Transl Neurodegener. 2024;13(1):1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wild CP. Complementing the genome with an exposome: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev. 2005;14(8):1847–50.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Doroszkiewicz J et al. Common and trace metals in alzheimer’s and parkinson’s diseases. Int J Mol Sci, 2023;24(21):15721.

  • Gu Y, et al. Mediterranean diet, inflammatory and metabolic biomarkers, and risk of Alzheimer’s disease. J Alzheimers Dis. 2010;22(2):483–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Flanagan E, et al. Nutrition and the ageing brain: moving towards clinical applications. Ageing Res Rev. 2020;62:101079.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gelpi E, et al. Neuronal intranuclear (hyaline) inclusion disease and fragile X-associated tremor/ataxia syndrome: a morphological and molecular dilemma. Brain. 2017;140(8):e51.

    Article 
    PubMed 

    Google Scholar 

  • Tolar M et al. Neurotoxic soluble amyloid oligomers drive alzheimer’s pathogenesis and represent a clinically validated target for slowing disease progression. Int J Mol Sci, 2021;22(12):6355.

  • Habashi M, et al. Early diagnosis and treatment of alzheimer’s disease by targeting toxic soluble Aβ oligomers. Proc Natl Acad Sci U S A. 2022;119(49):e2210766119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang ZX, et al. The essential role of soluble Aβ oligomers in alzheimer’s disease. Mol Neurobiol. 2016;53(3):1905–24.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Besedovsky L, Lange T, Haack M. The sleep-immune crosstalk in health and disease. Physiol Rev. 2019;99(3):1325–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Su WJ, et al. Antidiabetic drug glyburide modulates depressive-like behavior comorbid with insulin resistance. J Neuroinflammation. 2017;14(1):210.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10(10):717–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang J, et al. Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice. J Neuroinflammation. 2018;15(1):37.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nie R, et al. Porphyromonas gingivalis infection induces Amyloid-β accumulation in Monocytes/Macrophages. J Alzheimers Dis. 2019;72(2):479–94.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kemaladewi DU, et al. Correction of a splicing defect in a mouse model of congenital muscular dystrophy type 1A using a homology-directed-repair-independent mechanism. Nat Med. 2017;23(8):984–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sarkar S, et al. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded Huntingtin and related proteinopathies. Cell Death Differ. 2009;16(1):46–56.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grima JC, et al. Mutant Huntingtin disrupts the nuclear pore complex. Neuron. 2017;94(1):93–e1076.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

Continue Reading

  • Dimtirov withdraws ahead of Medvedev clash in Paris – ATP Tour

    1. Dimtirov withdraws ahead of Medvedev clash in Paris  ATP Tour
    2. Daniil Medvedev vs Grigor Dimitrov preview, head-to-head, prediction, odds, and betting tips | Paris Masters 2025  Sportskeeda
    3. ATP Paris Best Bets Including Khachanov vs Fonseca  Last…

    Continue Reading

  • Radiomics on Spinal Cord MRI May Offer Superior MS Assessment

    Radiomics on Spinal Cord MRI May Offer Superior MS Assessment

    Radiomics may offer a superior means to assess spinal cord pathology compared with visual assessment of MRI in patients with multiple sclerosis (MS), a new report found.

    The findings may make it easier for clinicians to more precisely understand…

    Continue Reading

  • Timing is everything: a simple chemical method to determine the bioavailable surface concentration of insecticide for insecticide-treated net evaluation | Malaria Journal

    Timing is everything: a simple chemical method to determine the bioavailable surface concentration of insecticide for insecticide-treated net evaluation | Malaria Journal

    All tests were conducted at Biolytrics Vietnam between September 2018 and June 2020. Five experiments were performed. (1) validation of the GC-FID (Gas Chromatography with Flame Ionization Detection) compared to standard CIPAC HPLC (High…

    Continue Reading

  • eNAMPT/TLR4 signaling drives PAH cellular phenotypic switching and lung vascular remodeling | Cell Communication and Signaling

    eNAMPT/TLR4 signaling drives PAH cellular phenotypic switching and lung vascular remodeling | Cell Communication and Signaling

  • Ahmed M, Zaghloul N, Zimmerman P, Casanova NG, Sun X, Reyes Hernon V, et al. Endothelial eNAMPT drives EndMT and preclinical PH: rescue by an eNAMPT-neutralizing mAb. Pulm Circ. 2021;11(4):20458940211059712.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen J, Sysol JR, Singla S, Zhao S, Yamamura A, Valdez-Jasso D, et al. Nicotinamide phosphoribosyltransferase promotes pulmonary vascular remodeling and is a therapeutic target in pulmonary arterial hypertension. Circulation. 2017;135(16):1532–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun X, Sun BL, Babicheva A, Vanderpool R, Oita RC, Casanova N, et al. Direct extracellular NAMPT involvement in pulmonary hypertension and vascular remodeling. Transcriptional regulation by SOX and HIF-2alpha. Am J Respir Cell Mol Biol. 2020;63(1):92–103.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gorelova A, Berman M, Al Ghouleh I. Endothelial-to-mesenchymal transition in pulmonary arterial hypertension. Antioxid Redox Signal. 2021;34(12):891–914.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pillai VB, Sundaresan NR, Kim G, Samant S, Moreno-Vinasco L, Garcia JG, et al. Nampt secreted from cardiomyocytes promotes development of cardiac hypertrophy and adverse ventricular remodeling. Am J Physiol Heart Circ Physiol. 2013;304(3):H415-26.

    CAS 
    PubMed 

    Google Scholar 

  • Oita RC, Camp SM, Ma W, Ceco E, Harbeck M, Singleton P, et al. Novel mechanism for nicotinamide phosphoribosyltransferase Inhibition of TNF-alpha-mediated apoptosis in human lung endothelial cells. Am J Respir Cell Mol Biol. 2018;59(1):36–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Casanova NG, Herazo-Maya J, Kempf CL, Sun BL, Song JH, Hernandez A et al. eNAMPT is a novel DAMP and therapeutic target in human and murine pulmonary fibrosis. . Am J Respir Cell Mol Biol. 2025.

  • Quijada H, Bermudez T, Kempf CL, Valera DG, Garcia AN, Camp SM et al. Endothelial eNAMPT amplifies preclinical acute lung injury: efficacy of an eNAMPT-Neutralising mAb. Eur Respir J. 2021;57(5):2002536.

  • Bao C, Liang S, Han Y, Yang Z, Liu S, Sun Y, et al. The novel lysosomal autophagy inhibitor (ROC-325) ameliorates experimental pulmonary hypertension. Hypertension. 2023;80(1):70–83.

    CAS 
    PubMed 

    Google Scholar 

  • Tang C, Luo Y, Li S, Huang B, Xu S, Li L. Characteristics of inflammation process in monocrotaline-induced pulmonary arterial hypertension in rats. Biomed Pharmacother. 2021;133:111081.

    CAS 
    PubMed 

    Google Scholar 

  • Moreno-Vinasco L, Gomberg-Maitland M, Maitland ML, Desai AA, Singleton PA, Sammani S, et al. Genomic assessment of a multikinase inhibitor, sorafenib, in a rodent model of pulmonary hypertension. Physiol Genomics. 2008;33(2):278–91.

    CAS 
    PubMed 

    Google Scholar 

  • Tang H, Babicheva A, McDermott KM, Gu Y, Ayon RJ, Song S, et al. Endothelial HIF-2alpha contributes to severe pulmonary hypertension due to endothelial-to-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol. 2018;314(2):L256–75.

    PubMed 

    Google Scholar 

  • Guo M, Morley MP, Jiang C, Wu Y, Li G, Du Y, et al. Guided construction of single cell reference for human and mouse lung. Nat Commun. 2023;14(1):4566.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsukui T, Sun KH, Wetter JB, Wilson-Kanamori JR, Hazelwood LA, Henderson NC, et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat Commun. 2020;11(1):1920.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, stringtie and ballgown. Nat Protoc. 2016;11(9):1650–67.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller SA, Policastro RA, Sriramkumar S, Lai T, Huntington TD, Ladaika CA, et al. LSD1 and aberrant DNA methylation mediate persistence of enteroendocrine progenitors that support BRAF-mutant colorectal cancer. Cancer Res. 2021;81(14):3791–805.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gillich A, Zhang F, Farmer CG, Travaglini KJ, Tan SY, Gu M, et al. Capillary cell-type specialization in the alveolus. Nature. 2020;586(7831):785–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu B, Yi D, Xia X, Ramirez K, Zhao H, Cao Y, et al. General capillary endothelial cells undergo reprogramming into arterial endothelial cells in pulmonary hypertension through HIF-2alpha/Notch4 pathway. Circulation. 2024;150(5):414–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Man S, Sanchez Duffhues G, Ten Dijke P, Baker D. The therapeutic potential of targeting the endothelial-to-mesenchymal transition. Angiogenesis. 2019;22(1):3–13.

    CAS 
    PubMed 

    Google Scholar 

  • Hong J, Arneson D, Umar S, Ruffenach G, Cunningham CM, Ahn IS, et al. Single-cell study of two rat models of pulmonary arterial hypertension reveals connections to human pathobiology and drug repositioning. Am J Respir Crit Care Med. 2021;203(8):1006–22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tarhan L, Bistline J, Chang J, Galloway B, Hanna E, Weitz E. Single cell portal: an interactive home for single-cell genomics data. bioRxiv. 2023. https://doi.org/10.1101/2023.07.13.548886.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res. 2014;115(1):165–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ahmed M, Casanova NG, Zaghloul N, Gupta A, Rodriguez M, Robbins IR, et al. The eNAMPT/TLR4 inflammatory cascade drives the severity of intra-amniotic inflammation in pregnancy and predicts infant outcomes. Front Physiol. 2023;14:1129413.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bime C, Casanova NG, Nikolich-Zugich J, Knox KS, Camp SM, Garcia JGN. Strategies to dampen COVID-19-mediated lung and systemic inflammation and vascular injury. Transl Res. 2021;232:374–8. https://doi.org/10.1016/j.trsl.2020.12.008.

  • Gao L, Ramirez FJ, Cabrera JTO, Varghese MV, Watanabe M, Tsuji-Hosokawa A, et al. eNAMPT is a novel therapeutic target for mitigation of coronary microvascular disease in type 2 diabetes. Diabetologia. 2024;67(9):1998–2011.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun BL, Sun X, Casanova N, Garcia AN, Oita R, Algotar AM, et al. Role of secreted extracellular nicotinamide phosphoribosyltransferase (eNAMPT) in prostate cancer progression: novel biomarker and therapeutic target. EBioMedicine. 2020;61:103059.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun BL, Sun X, Kempf CL, Song JH, Casanova NG, Camp SM, et al. Involvement of eNAMPT/TLR4 inflammatory signaling in progression of non-alcoholic fatty liver disease, steatohepatitis, and fibrosis. FASEB J. 2023;37(3):e22825.

    CAS 
    PubMed 

    Google Scholar 

  • Tumurkhuu G, Casanova NG, Kempf CL, Ercan Laguna D, Camp SM, Dagvadorj J, et al. eNAMPT/TLR4 inflammatory cascade activation is a key contributor to SLE lung vasculitis and alveolar hemorrhage. J Transl Autoimmun. 2023;6:100181.

    CAS 
    PubMed 

    Google Scholar 

  • Ye SQ, Simon BA, Maloney JP, Zambelli-Weiner A, Gao L, Grant A, et al. Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am J Respir Crit Care Med. 2005;171(4):361–70.

    PubMed 

    Google Scholar 

  • Alvandi Z, Bischoff J. Endothelial-mesenchymal transition in cardiovascular disease. Arterioscler Thromb Vasc Biol. 2021;41(9):2357–69.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang J, Pu Y, Zhang H, Xie L, He L, Zhang CL, et al. KLF2 mediates the suppressive effect of laminar flow on vascular calcification by inhibiting endothelial BMP/SMAD1/5 signaling. Circ Res. 2021;129(4):e87-100.

    CAS 
    PubMed 

    Google Scholar 

  • Kang K, Xiang J, Zhang X, Xie Y, Zhou M, Zeng L, et al. N6-methyladenosine modification of KLF2 may contribute to endothelial-to-mesenchymal transition in pulmonary hypertension. Cell Mol Biol Lett. 2024;29(1):69.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang-Sun ZY, Xu XZ, Escames G, Lei WR, Zhao L, Zhou YZ, et al. Targeting NR1D1 in organ injury: challenges and prospects. Mil Med Res. 2023;10(1):62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chae WJ, Bothwell ALM. Canonical and non-canonical Wnt signaling in immune cells. Trends Immunol. 2018;39(10):830–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun L, Xing J, Zhou X, Song X, Gao S. Wnt/beta-catenin signalling, epithelial-mesenchymal transition and crosslink signalling in colorectal cancer cells. Biomed Pharmacother. 2024;175:116685.

    CAS 
    PubMed 

    Google Scholar 

  • Tang H, Wu K, Wang J, Vinjamuri S, Gu Y, Song S, et al. Pathogenic role of mTORC1 and mTORC2 in pulmonary hypertension. JACC Basic Transl Sci. 2018;3(6):744–62.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lowe M, Lage J, Paatela E, Munson D, Hostager R, Yuan C, et al. Cry2 is critical for circadian regulation of myogenic differentiation by Bclaf1-mediated mRNA stabilization of Cyclin D1 and Tmem176b. Cell Rep. 2018;22(8):2118–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bryant AJ, Ebrahimi E, Nguyen A, Wolff CA, Gumz ML, Liu AC, Esser KA. A wrinkle in time: circadian biology in pulmonary vascular health and disease. Am J Physiol Lung Cell Mol Physiol. 2022;322(1):L84–101.

    CAS 
    PubMed 

    Google Scholar 

  • Lopez-Moncada F, Torres MJ, Lavanderos B, Cerda O, Castellon EA, Contreras HR. SPARC induces E-Cadherin repression and enhances cell migration through integrin alphavbeta3 and the transcription factor ZEB1 in prostate cancer cells. Int J Mol Sci. 2022;23(11):5874. https://doi.org/10.3390/ijms23115874.

  • Dean A, Gregorc T, Docherty CK, Harvey KY, Nilsen M, Morrell NW, et al. Role of the aryl hydrocarbon receptor in Sugen 5416-induced experimental pulmonary hypertension. Am J Respir Cell Mol Biol. 2018;58(3):320–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang S, Guo H, Ma K, Li X, Wu D, Wang Y, et al. A PLCB1-PI3K-AKT signaling axis activates EMT to promote cholangiocarcinoma progression. Cancer Res. 2021;81(23):5889–903.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karoor V, Fini MA, Loomis Z, Sullivan T, Hersh LB, Gerasimovskaya E, et al. Sustained activation of Rho GTPases promotes a synthetic pulmonary artery smooth muscle cell phenotype in Neprilysin null mice. Arterioscler Thromb Vasc Biol. 2018;38(1):154–63.

    CAS 
    PubMed 

    Google Scholar 

  • Alexander MR, Murgai M, Moehle CW, Owens GK. Interleukin-1beta modulates smooth muscle cell phenotype to a distinct inflammatory state relative to PDGF-DD via NF-kappaB-dependent mechanisms. Physiol Genomics. 2012;44(7):417–29.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cho DI, Ahn MJ, Cho HH, Cho M, Jun JH, Kang BG, et al. Angptl4 stabilizes atherosclerotic plaques and modulates the phenotypic transition of vascular smooth muscle cells through KLF4 downregulation. Exp Mol Med. 2023;55(2):426–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheung AK, Ko JM, Lung HL, Chan KW, Stanbridge EJ, Zabarovsky E, et al. Cysteine-rich intestinal protein 2 (CRIP2) acts as a repressor of NF-kappaB-mediated proangiogenic cytokine transcription to suppress tumorigenesis and angiogenesis. Proc Natl Acad Sci U S A. 2011;108(20):8390–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang L, Zhou F, Zheng D, Wang D, Li X, Zhao C, Huang X. FGF/FGFR signaling: from lung development to respiratory diseases. Cytokine Growth Factor Rev. 2021;62:94–104.

    CAS 
    PubMed 

    Google Scholar 

  • Wen Z, Jiang L, Yu F, Xu X, Chen M, Li C, et al. ScrNA-seq reveals NAMPT-mediated macrophage polarization shapes smooth muscle cell plasticity in pulmonary arterial hypertension. Interdiscip Med. 2024;2(4):e20240016.

    CAS 

    Google Scholar 

  • Streef TJ, Groeneveld EJ, van Herwaarden T, Hjortnaes J, Goumans MJ, Smits AM. Single-cell analysis of human fetal epicardium reveals its cellular composition and identifies CRIP1 as a modulator of EMT. Stem Cell Reports. 2023;18(7):1421–35.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ahmed MN, Zhang Y, Codipilly C, Zaghloul N, Patel D, Wolin M, Miller EJ. Extracellular superoxide dismutase overexpression can reverse the course of hypoxia-induced pulmonary hypertension. Mol Med. 2012;18:38–46.

    CAS 
    PubMed 

    Google Scholar 

  • Tarazona S, Furio-Tari P, Turra D, Pietro AD, Nueda MJ, Ferrer A, et al. Data quality aware analysis of differential expression in RNA-seq with NOIseq r/bioc package. Nucleic Acids Res. 2015;43(21):e140.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zawia A, Arnold ND, West L, Pickworth JA, Turton H, Iremonger J, et al. Altered macrophage polarization induces experimental pulmonary hypertension and is observed in patients with pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol. 2021;41(1):430–45.

    CAS 
    PubMed 

    Google Scholar 

  • Qiu H, He Y, Ouyang F, Jiang P, Guo S, Guo Y. The role of regulatory T cells in pulmonary arterial hypertension. J Am Heart Assoc. 2019;8(23):e014201.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodriguez M, Xu H, Hernandez A, Ingraham J, Canizales Galaviz J, Teran Arce F et al. NEDD4 E3 ligase-catalyzed NAMPT ubiquitination and autophagy are essential for pyroptosis-independent NAMPT secretion in human monocytes. Cell Commun Signal. 2025;23:157 https://doi.org/10.1186/s12964-025-02164-5.

  • Audrito V, Serra S, Brusa D, Mazzola F, Arruga F, Vaisitti T, et al. Extracellular nicotinamide phosphoribosyltransferase (NAMPT) promotes M2 macrophage polarization in chronic lymphocytic leukemia. Blood. 2015;125(1):111–23.

    CAS 
    PubMed 

    Google Scholar 

  • Wang Z, Li W, Chen S, Tang XX. Role of ADAM and ADAMTS proteases in pathological tissue remodeling. Cell Death Discov. 2023;9(1):447.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hudalla H, Michael Z, Christodoulou N, Willis GR, Fernandez-Gonzalez A, Filatava EJ, et al. Carbonic anhydrase inhibition ameliorates inflammation and experimental pulmonary hypertension. Am J Respir Cell Mol Biol. 2019;61(4):512–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu Y, Dun H, Ye L, Terada Y, Shriver LP, Patti GJ et al. Targeting fatty acid beta-oxidation impairs monocyte differentiation and prolongs heart allograft survival. JCI Insight. 2022;7(7):e151596. https://doi.org/10.1172/jci.insight.151596.

  • Tyrrell C, De Cecco M, Reynolds NL, Kilanowski F, Campopiano D, Barran P, et al. Isoleucine/leucine2 is essential for chemoattractant activity of beta-defensin Defb14 through chemokine receptor 6. Mol Immunol. 2010;47(6):1378–82.

    CAS 
    PubMed 

    Google Scholar 

  • Cai X, Deng J, Ming Q, Cai H, Chen Z. Chemokine-like factor 1: a promising therapeutic target in human diseases. Exp Biol Med (Maywood). 2020;245(16):1518–28.

    CAS 
    PubMed 

    Google Scholar 

  • Liao Y, Deng C, Wang X. VSIG4 ameliorates intestinal inflammation through inhibiting macrophages NLRP3 inflammasome and pyroptosis. Tissue Cell. 2024;86:102285.

    CAS 
    PubMed 

    Google Scholar 

  • Li R, Chen B, Kubota A, Hanna A, Humeres C, Hernandez SC, et al. Protective effects of macrophage-specific integrin alpha5 in myocardial infarction are associated with accentuated angiogenesis. Nat Commun. 2023;14(1):7555.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jairath V, Acosta Felquer ML, Cho RJ. IL-23 inhibition for chronic inflammatory disease. Lancet. 2024;404(10463):1679–92.

    CAS 
    PubMed 

    Google Scholar 

  • Tang C, Chen S, Qian H, Huang W. Interleukin-23: as a drug target for autoimmune inflammatory diseases. Immunology. 2012;135(2):112–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garcia AN, Casanova NG, Valera DG, Sun X, Song JH, Kempf CL, et al. Involvement of eNAMPT/TLR4 signaling in murine radiation pneumonitis: protection by eNAMPT neutralization. Transl Res. 2022;239:44–57.

    CAS 
    PubMed 

    Google Scholar 

  • Hassoun PM, Mouthon L, Barbera JA, Eddahibi S, Flores SC, Grimminger F, et al. Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol. 2009;54(1 Suppl):S10–9.

    CAS 
    PubMed 

    Google Scholar 

  • Pullamsetti SS, Savai R, Janssen W, Dahal BK, Seeger W, Grimminger F, et al. Inflammation, immunological reaction and role of infection in pulmonary hypertension. Clin Microbiol Infect. 2011;17(1):7–14.

    CAS 
    PubMed 

    Google Scholar 

  • Soon E, Holmes AM, Treacy CM, Doughty NJ, Southgate L, Machado RD, et al. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation. 2010;122(9):920–7.

    CAS 
    PubMed 

    Google Scholar 

  • Wang J, Tian XT, Peng Z, Li WQ, Cao YY, Li Y, Li XH. HMGB1/TLR4 promotes hypoxic pulmonary hypertension via suppressing BMPR2 signaling. Vascul Pharmacol. 2019;117:35–44.

    CAS 
    PubMed 

    Google Scholar 

  • Xiao G, Zhuang W, Wang T, Lian G, Luo L, Ye C, et al. Transcriptomic analysis identifies toll-like and nod-like pathways and necroptosis in pulmonary arterial hypertension. J Cell Mol Med. 2020;24(19):11409–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Young KC, Hussein SM, Dadiz R, deMello D, Devia C, Hehre D, et al. Toll-like receptor 4-deficient mice are resistant to chronic hypoxia-induced pulmonary hypertension. Exp Lung Res. 2010;36(2):111–9.

    CAS 
    PubMed 

    Google Scholar 

  • Dai Z, Li M, Wharton J, Zhu MM, Zhao YY. Prolyl-4 hydroxylase 2 (PHD2) deficiency in endothelial cells and hematopoietic cells induces obliterative vascular remodeling and severe pulmonary arterial hypertension in mice and humans through hypoxia-inducible factor-2alpha. Circulation. 2016;133(24):2447–58.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading

  • His Highness the Aga Khan meets with President Macron in Paris

    His Highness the Aga Khan meets with President Macron in Paris

    Paris, France, 29 October 2025 – His Highness the Aga Khan was received by President Emmanuel Macron at the Élysée Palace yesterday. The meeting follows the signing of an agreement with the government of France in July 2025 to work together…

    Continue Reading