Blog

Continue Reading

  • Samsung Powers Pearson’s Revibe Smartwatch-based Solution to Help Children and Adults with Focus and Attention Challenges

    Samsung Powers Pearson’s Revibe Smartwatch-based Solution to Help Children and Adults with Focus and Attention Challenges

    Children and adults face challenges with focus and attention. This not only makes learning difficult but can seriously impact a person’s ability to plan tasks, complete work and finish assignments. With children, the effects of limited focus can be particularly pronounced, inhibiting their educational, social and emotional development.

    Samsung Electronics, a world leader in consumer electronics, and Pearson (FTSE: PSON.L), the world’s lifelong learning company, are collaborating to help children and adults overcome these challenges.

    Pearson recently introduced Revibe, an AI-enabled wearable solution delivered via the Samsung Galaxy Watch7, to help individuals build skills in focus, attention and self-regulation.

    Revibe tracks on-task behavior, fidgeting, work completion and exercise while providing reminders to stay focused, remember tasks and complete work, which, as part of a healthy lifestyle, may help individuals living with conditions such as ADHD.

    By leveraging AI to translate real-time behavioral data into actionable insights, Revibe equips professionals and individual users with data-informed pathways to improve focus in the classroom and beyond.

    Combining Pearson’s proprietary, attention-enhancing software with the Galaxy Watch7, including Samsung’s Knox mobile security platform, Revibe is a discreet, real-time tool designed to help users improve concentration and develop stronger self-regulation skills throughout the day. This collaboration reflects a shared commitment to advancing innovation and creating inclusive, accessible solutions that empower individuals of all ages who are navigating focus and attention-related challenges.

    Galaxy Watch 8

    Using AI and advanced algorithms to understand Galaxy Watch sensor data, Revibe learns each user’s behavior patterns, including attention span, fidgeting, steps, calories burned and more. Revibe’s software then addresses individuals with focus and attention challenges from multiple angles. Vibrating alerts bring the user back on task and bolster executive function, while on-screen “light bulb moments” provide guidance that won’t disturb others.

    Leveraging Samsung’s Freestanding Mode on the Galaxy Watch, Revibe also eliminates smartphone distractions by enabling the Galaxy Watch to operate independently, without a smartphone, for a streamlined user experience. Freestanding Mode is especially important when Revibe is used by children, since most smartwatches are simply an extension of a smartphone, and many schools don’t allow children to carry phones.

    The Revibe app offers users, families, educators, and clinicians a user-friendly dashboard that visualizes progress in near real time, which can lead to more customized support in the classroom and elsewhere to help individuals succeed.

    “With Revibe, Pearson empowers individuals who experience focus and attention barriers, along with their families and support networks, by helping them build the self-regulation skills they need for success,” said Rich Brancaccio, Senior Director, Pearson, and the Founder of Revibe. “After evaluating multiple wearable solutions, we determined that the Samsung Galaxy Watch was the right device for Revibe, offering the ideal balance of a low-distraction interface, extended battery life1 and secure data collection capabilities to serve the needs of these individuals and help them reach their fullest potential.”

    “Samsung Galaxy Watch perfectly fits Revibe’s needs thanks to capabilities such as Samsung’s Knox mobile security management platform, Freestanding Mode, and Kiosk Mode,” said Cherry Drulis, MBA, BSN, RN, Senior Director, Regulated Industry Samsung. “With Knox, Revibe can apply policies to the Galaxy Watch, including software updates to ensure continued compatibility, then detach it from its phone dependency as a freestanding device. Freestanding Mode maintains location tracking so lost devices can be recovered2, while Kiosk Mode keeps Galaxy Watch focused on Revibe’s application, ensuring individuals with focus and attention challenges enjoy easier access with fewer distractions.”

    The Samsung and Revibe collaboration will begin with the Samsung Galaxy Watch7 series and is expected to expand to additional Samsung devices. Revibe will offer the solution to clinical professionals across education and healthcare, as well as individual users, parents, and other care teams.

    To learn more about Samsung and Pearson’s collaboration, please visit: https://insights.samsung.com/2025/10/29/the-power-of-collaboration or watch the video: https://www.youtube.com/watch?v=ILiCdec7rp4

    For more information on the Revibe wearable, please visit: https://www.pearsonassessments.com/campaign/revibe.html

    For more information on Samsung Galaxy Watch7, please visit: https://www.samsung.com/us/watches/galaxy-watch7/

    Continue Reading

  • Multi-pronged surveillance to understand the spatiotemporal correlations among macaques, vectors and humans in Plasmodium knowlesi malaria transmission | Parasites & Vectors

    Multi-pronged surveillance to understand the spatiotemporal correlations among macaques, vectors and humans in Plasmodium knowlesi malaria transmission | Parasites & Vectors

  • World Health Organization. World malaria report 2024. Geneva, Switzerland: World Health Organization; 2024.

    Book 

    Google Scholar 

  • Cuenca PR, Key S, Jumail A, Surendra H, Ferguson HM, Drakeley CJ, et al….

  • Continue Reading

  • Luke Evans Will Make Broadway Debut in ‘Rocky Horror Picture Show’

    Luke Evans Will Make Broadway Debut in ‘Rocky Horror Picture Show’

    Luke Evans will lead the Broadway revival of The Rocky Horror Show this season. 

    Evans, who appeared as Gaston in Disney’s live action Beauty and the Beast, will make his Broadway debut in the production as Frank-N-Furter. The musical…

    Continue Reading

  • Luke Evans to star in ‘The Rocky Horror Show’ on Broadway

    Luke Evans to star in ‘The Rocky Horror Show’ on Broadway

    The screen and stage star will make his Broadway debut in Roundabout Theatre Company’s revival of the cult classic musical directed by Sam Pinkleton.

    The anticipation is over! Roundabout Theatre Company has announced that Luke Evans will star in…

    Continue Reading

  • Just a moment…

    Just a moment…

    Continue Reading

  • Trump Says South Korea Trade Deal Is Virtually Done – The Wall Street Journal

    1. Trump Says South Korea Trade Deal Is Virtually Done  The Wall Street Journal
    2. S Korea announces lowering of some tariffs as part of new US trade deal  BBC
    3. Trump and South Korea reach agreement on trade deal details as shutdown impacts widen in US  

    Continue Reading

  • Inflammation in Neuronal Intranuclear Inclusion Disease (NIID): mechanisms, biomarkers, and therapeutic implications | Journal of Neuroinflammation

    Inflammation in Neuronal Intranuclear Inclusion Disease (NIID): mechanisms, biomarkers, and therapeutic implications | Journal of Neuroinflammation

  • Sung JH, et al. An unusual degenerative disorder of neurons associated with a novel intranuclear hyaline inclusion (neuronal intranuclear hyaline inclusion disease). A clinicopathological study of a case. J Neuropathol Exp Neurol. 1980;39(2):107–30.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sone J, et al. Clinicopathological features of adult-onset neuronal intranuclear inclusion disease. Brain. 2016;139(Pt 12):3170–86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sone J, et al. Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat Genet. 2019;51(8):1215–21.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tian Y, et al. Expansion of human-specific GGC repeat in neuronal intranuclear inclusion disease-related disorders. Am J Hum Genet. 2019;105(1):166–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun QY, et al. Expansion of GGC repeat in the human-specific NOTCH2NLC gene is associated with essential tremor. Brain. 2020;143(1):222–33.

    Article 
    PubMed 

    Google Scholar 

  • Ehrlich ME, Ellerby LM. Neuronal intranuclear inclusion disease: polyglycine protein is the culprit. Neuron. 2021;109(11):1757–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu J, et al. CGG repeat expansion in NOTCH2NLC causes mitochondrial dysfunction and progressive neurodegeneration in drosophila model. Proc Natl Acad Sci U S A. 2022;119(41):e2208649119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu Q, et al. Expression of expanded GGC repeats within NOTCH2NLC causes behavioral deficits and neurodegeneration in a mouse model of neuronal intranuclear inclusion disease. Sci Adv. 2022;8(47):eadd6391.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong S, et al. Upstream open reading frame with NOTCH2NLC GGC expansion generates polyglycine aggregates and disrupts nucleocytoplasmic transport: implications for polyglycine diseases. Acta Neuropathol. 2021;142(6):1003–23.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fan Y, et al. GGC repeat expansion in NOTCH2NLC induces dysfunction in ribosome biogenesis and translation. Brain. 2023;146(8):3373–91.

    Article 
    PubMed 

    Google Scholar 

  • Tian Y, et al. Clinical features of NOTCH2NLC-related neuronal intranuclear inclusion disease. J Neurol Neurosurg Psychiatry. 2022;93(12):1289–98.

    Article 
    PubMed 

    Google Scholar 

  • Chen H, et al. Re-defining the clinicopathological spectrum of neuronal intranuclear inclusion disease. Ann Clin Transl Neurol. 2020;7(10):1930–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tai H, et al. Clinical features and classification of neuronal intranuclear inclusion disease. Neurol Genet. 2023;9(2):e200057.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang S, et al. Generic diagramming platform (GDP): a comprehensive database of high-quality biomedical graphics. Nucleic Acids Res. 2025;53(D1):D1670–6.

    Article 
    PubMed 

    Google Scholar 

  • Pang J, et al. The value of NOTCH2NLC gene detection and skin biopsy in the diagnosis of neuronal intranuclear inclusion disease. Front Neurol. 2021;12:624321.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee HG, et al. Neuroinflammation: an astrocyte perspective. Sci Transl Med. 2023;15(721):eadi7828.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bao L et al. Immune system involvement in neuronal intranuclear inclusion disease. Neuropathol Appl Neurobiol, 2024;50(2):e12976.

  • Mori K, et al. Imaging findings and pathological correlations of subacute encephalopathy with neuronal intranuclear inclusion disease-case report. Radiol Case Rep. 2022;17(12):4481–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prinz M, Priller J. The role of peripheral immune cells in the CNS in steady state and disease. Nat Neurosci. 2017;20(2):136–44.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yoshii D, et al. An autopsy case of adult-onset neuronal intranuclear inclusion disease with perivascular preservation in cerebral white matter. Neuropathology. 2021;42(1):66–73.

    Article 
    PubMed 

    Google Scholar 

  • Tracey KJ, Cerami A. Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med. 1994;45:491–503.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117(14):3720–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu X, Hong D. Neuronal intranuclear inclusion disease: recognition and update. J Neural Transm. 2021;128(3):295–303.

    Article 
    PubMed 

    Google Scholar 

  • Bao L, et al. Utility of labial salivary gland biopsy in the histological diagnosis of neuronal intranuclear inclusion disease. Eur J Neurol. 2024;31(1):e16102.

    Article 
    PubMed 

    Google Scholar 

  • Zhong S, et al. Spatial and Temporal distribution of white matter lesions in NOTCH2NLC-Related neuronal intranuclear inclusion disease. Neurology. 2025;104(4):e213360.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Du N et al. Value of neutrophil-to-lymphocyte ratio in neuronal intranuclear inclusion disease. Heliyon, 2024;10(6):e27953.

  • Yan Y, et al. The clinical characteristics of neuronal intranuclear inclusion disease and its relation with inflammation. Neurol Sci. 2023;44(9):3189–97.

    Article 
    PubMed 

    Google Scholar 

  • Shen Y et al. uN2CpolyG-mediated p65 nuclear sequestration suppresses the NF-κB-NLRP3 pathway in neuronal intranuclear inclusion disease. Cell Communication Signal, 2025;23(1):68.

  • Tateishi J, et al. Intranuclear inclusions in muscle, nervous tissue, and adrenal gland. Acta Neuropathol. 1984;63(1):24–32.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Platero JL et al. The impact of coconut oil and Epigallocatechin gallate on the levels of IL-6, anxiety and disability in multiple sclerosis patients. Nutrients, 2020;12(2):305.

  • Casali BT, et al. Omega-3 fatty acids augment the actions of nuclear receptor agonists in a mouse model of alzheimer’s disease. J Neurosci. 2015;35(24):9173–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chauhan A, et al. Phytochemicals targeting NF-κB signaling: potential anti-cancer interventions. J Pharm Anal. 2022;12(3):394–405.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shabab T, et al. Neuroinflammation pathways: a general review. Int J Neurosci. 2017;127(7):624–33.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gleeson M, et al. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11(9):607–15.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pedersen BK. Adolph distinguished lecture: muscle as an endocrine organ: IL-6 and other myokines. J Appl Physiol (1985). 2009;107(4):1006–14. Edward F.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Steensberg A, et al. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab. 2003;285(2):E433–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ma Q. Beneficial effects of moderate voluntary physical exercise and its biological mechanisms on brain health. Neurosci Bull. 2008;24(4):265–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adlard PA, et al. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J Neurosci. 2005;25(17):4217–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Periasamy S, et al. Sleep deprivation-induced multi-organ injury: role of oxidative stress and inflammation. Excli J. 2015;14:672–83.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shearer WT, et al. Soluble TNF-alpha receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight. J Allergy Clin Immunol. 2001;107(1):165–70.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ooms S, et al. Effect of 1 night of total sleep deprivation on cerebrospinal fluid β-amyloid 42 in healthy middle-aged men: a randomized clinical trial. JAMA Neurol. 2014;71(8):971–7.

    Article 
    PubMed 

    Google Scholar 

  • Reiter RJ, et al. Brain washing and neural health: role of age, sleep, and the cerebrospinal fluid melatonin rhythm. Cell Mol Life Sci. 2023;80(4):88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao HY, et al. Chronic sleep restriction induces cognitive deficits and cortical Beta-Amyloid deposition in mice via BACE1-Antisense activation. CNS Neurosci Ther. 2017;23(3):233–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Y, et al. Quercetin ameliorates memory impairment by inhibiting abnormal microglial activation in a mouse model of Paradoxical sleep deprivation. Biochem Biophys Res Commun. 2022;632:10–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Irwin MR, et al. Tai Chi compared with cognitive behavioral therapy and the reversal of systemic, cellular and genomic markers of inflammation in breast cancer survivors with insomnia: A randomized clinical trial. Brain Behav Immun. 2024;120:159–66.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dutcher JM, et al. Smartphone mindfulness meditation training reduces Pro-inflammatory gene expression in stressed adults: A randomized controlled trial. Brain Behav Immun. 2022;103:171–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walsh E, Eisenlohr-Moul T, Baer R. Brief mindfulness training reduces salivary IL-6 and TNF-α in young women with depressive symptomatology. J Consult Clin Psychol. 2016;84(10):887–97.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patel DI, et al. Therapeutic yoga reduces pro-tumorigenic cytokines in cancer survivors. Support Care Cancer. 2022;31(1):33.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Streeter CC, et al. Effects of yoga on the autonomic nervous system, gamma-aminobutyric-acid, and allostasis in epilepsy, depression, and post-traumatic stress disorder. Med Hypotheses. 2012;78(5):571–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ozturk FO, Tezel A. Effect of laughter yoga on mental symptoms and salivary cortisol levels in first-year nursing students: A randomized controlled trial. Int J Nurs Pract. 2021;27(2):e12924.

    Article 
    PubMed 

    Google Scholar 

  • Nair RG, Vasudev MM, Mavathur R. Role of yoga and its plausible mechanism in the mitigation of DNA damage in Type-2 diabetes: A randomized clinical trial. Ann Behav Med. 2022;56(3):235–44.

    Article 
    PubMed 

    Google Scholar 

  • Chen SJ, et al. Association of fecal and plasma levels of Short-Chain fatty acids with gut microbiota and clinical severity in patients with Parkinson disease. Neurology. 2022;98(8):e848–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chakraborty P, Gamage H, Laird AS. Butyrate as a potential therapeutic agent for neurodegenerative disorders. Neurochem Int. 2024;176:105745.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li N, et al. Prebiotic inulin controls Th17 cells mediated central nervous system autoimmunity through modulating the gut microbiota and short chain fatty acids. Gut Microbes. 2024;16(1):2402547.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Y, et al. Transmission of alzheimer’s disease-associated microbiota dysbiosis and its impact on cognitive function: evidence from mice and patients. Mol Psychiatry. 2023;28(10):4421–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim MS, et al. Transfer of a healthy microbiota reduces amyloid and Tau pathology in an alzheimer’s disease animal model. Gut. 2020;69(2):283–94.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Beydoun MA, et al. Clinical and bacterial markers of periodontitis and their association with incident All-Cause and alzheimer’s disease dementia in a large National survey. J Alzheimers Dis. 2020;75(1):157–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ilievski V, et al. Chronic oral application of a periodontal pathogen results in brain inflammation, neurodegeneration and amyloid beta production in wild type mice. PLoS ONE. 2018;13(10):e0204941.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang RP, et al. IL-1β and TNF-α play an important role in modulating the risk of periodontitis and alzheimer’s disease. J Neuroinflammation. 2023;20(1):71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dominy SS, et al. Porphyromonas gingivalis in alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. 2019;5(1):eaau3333.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brettschneider J, et al. Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS ONE. 2012;7(6):e39216.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Graves MC, et al. Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells. Amyotroph Lateral Scler Other Motor Neuron Disord. 2004;5(4):213–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Henkel JS, et al. Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol. 2004;55(2):221–35.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu YH, et al. Neuronal intranuclear inclusion disease in patients with adult-onset non-vascular leukoencephalopathy. Brain. 2022;145(9):3010–21.

    Article 
    PubMed 

    Google Scholar 

  • Chen L, et al. Teaching neuroimages: the zigzag edging sign of adult-onset neuronal intranuclear inclusion disease. Neurology. 2019;92(19):e2295-6.

    Article 
    PubMed 

    Google Scholar 

  • Fragoso DC, et al. Imaging of Creutzfeldt-Jakob disease: imaging patterns and their differential diagnosis. Radiographics. 2017;37(1):234–57.

    Article 
    PubMed 

    Google Scholar 

  • Muttikkal TJ, Wintermark M. MRI patterns of global hypoxic-ischemic injury in adults. J Neuroradiol. 2013;40(3):164–71.

    Article 
    PubMed 

    Google Scholar 

  • Hasebe M, et al. Hypoglycemic encephalopathy. QJM. 2022;115(7):478–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang Z, et al. MRI features of neuronal intranuclear inclusion disease, combining visual and quantitative imaging investigations. J Neuroradiol. 2024;51(3):274–80.

    Article 
    PubMed 

    Google Scholar 

  • Okamura S, et al. A case of neuronal intranuclear inclusion disease with recurrent vomiting and without apparent DWI abnormality for the first seven years. Heliyon. 2020;6(8):e04675.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu Y, et al. Clinical and mechanism advances of neuronal intranuclear inclusion disease. Front Aging Neurosci. 2022;14:934725.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang H, et al. Clinical and pathological features in adult-onset NIID patients with cortical enhancement. J Neurol. 2020;267(11):3187–98.

    Article 
    PubMed 

    Google Scholar 

  • Shen Y, et al. Encephalitis-like episodes with cortical edema and enhancement in patients with neuronal intranuclear inclusion disease. Neurol Sci. 2024;45(9):4501–11.

    Article 
    PubMed 

    Google Scholar 

  • Jacobs AH, Tavitian B. Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab. 2012;32(7):1393–415.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Corica F et al. PET imaging of Neuro-Inflammation with tracers targeting the translocator protein (TSPO), a systematic review: from bench to bedside. Diagnostics (Basel), 2023;13(6):1029.

  • Banati RB. Visualising microglial activation in vivo. Glia. 2002;40(2):206–17.

    Article 
    PubMed 

    Google Scholar 

  • Turner MR, et al. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11 C](R)-PK11195 positron emission tomography study. Neurobiol Dis. 2004;15(3):601–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tondo G, et al. (11) C-PK11195 PET-based molecular study of microglia activation in SOD1 amyotrophic lateral sclerosis. Ann Clin Transl Neurol. 2020;7(9):1513–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malpetti M, et al. Microglial activation in the frontal cortex predicts cognitive decline in frontotemporal dementia. Brain. 2023;146(8):3221–31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong S, et al. Microglia contribute to polyG-dependent neurodegeneration in neuronal intranuclear inclusion disease. Acta Neuropathol. 2024;148(1):21.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hutton BF. The origins of SPECT and SPECT/CT. Eur J Nucl Med Mol Imaging. 2014;41(Suppl 1):S3-16.

    Article 
    PubMed 

    Google Scholar 

  • Benadiba M, et al. New molecular targets for PET and SPECT imaging in neurodegenerative diseases. Braz J Psychiatry. 2012;34(Suppl 2):S125–36.

    Article 
    PubMed 

    Google Scholar 

  • Kimachi T, et al. Reversible encephalopathy with focal brain edema in patients with neuronal intranuclear inclusion disease. Neurology and Clinical Neuroscience. 2017;5(6):198–200.

    Article 

    Google Scholar 

  • Fujita K, et al. Neurologic attack and dynamic perfusion abnormality in neuronal intranuclear inclusion disease. Neurol Clin Pract. 2017;7(6):e39-42.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pan Y, et al. Expression of expanded GGC repeats within NOTCH2NLC causes cardiac dysfunction in mouse models. Cell Biosci. 2023;13(1):157.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heslegrave A, et al. Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer’s disease. Mol Neurodegener. 2016;11:3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Craig-Schapiro R, et al. YKL-40: a novel prognostic fluid biomarker for preclinical alzheimer’s disease. Biol Psychiatry. 2010;68(10):903–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crols R, et al. Increased GFAP levels in CSF as a marker of organicity in patients with Alzheimer’s disease and other types of irreversible chronic organic brain syndrome. J Neurol. 1986;233(3):157–60.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Andrés-Benito P, et al. Differential astrocyte and oligodendrocyte vulnerability in murine Creutzfeldt-Jakob disease. Prion. 2021;15(1):112–20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mussbacher M, et al. NF-κB in monocytes and macrophages – an inflammatory master regulator in multitalented immune cells. Front Immunol. 2023;14:1134661.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Biasizzo M, Kopitar-Jerala N. Interplay between NLRP3 inflammasome and autophagy. Front Immunol. 2020;11:591803.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng Q, et al. Pseudomonas aeruginosa triggers macrophage autophagy to escape intracellular killing by activation of the NLRP3 inflammasome. Infect Immun. 2016;84(1):56–66.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Geissmann F, et al. Development of monocytes, macrophages, and dendritic cells. Science. 2010;327(5966):656–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guilliams M, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol. 2014;14(8):571–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prinz M, Jung S, Priller J. Microglia Biology: One Century Evol Concepts Cell. 2019;179(2):292–311.

    CAS 

    Google Scholar 

  • Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018;18(4):225–42.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liddelow SA, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keren-Shaul H, et al. A unique microglia type associated with restricting development of alzheimer’s disease. Cell. 2017;169(7):1276–e129017.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mathys H, et al. Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep. 2017;21(2):366–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou Y, et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat Med. 2020;26(1):131–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity. 2016;44(3):439–49.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol. 2014;5:514.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merad M, et al. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 2013;31:563–604.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun R, Jiang H. Border-associated macrophages in the central nervous system. J Neuroinflammation. 2024;21(1):67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goldmann T, et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol. 2016;17(7):797–805.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Hove H, et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat Neurosci. 2019;22(6):1021–35.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bell RD, Zlokovic BV. Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease. Acta Neuropathol. 2009;118(1):103–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faraco G, et al. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J Clin Invest. 2016;126(12):4674–89.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rua R, et al. Infection drives meningeal engraftment by inflammatory monocytes that impairs CNS immunity. Nat Immunol. 2019;20(4):407–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dani N, et al. A cellular and Spatial map of the choroid plexus across brain ventricles and ages. Cell. 2021;184(11):3056–e307421.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mrdjen D, et al. High-Dimensional Single-Cell mapping of central nervous system immune cells reveals distinct myeloid subsets in Health, Aging, and disease. Immunity. 2018;48(2):380–95. .e6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Park L, et al. Brain perivascular macrophages initiate the neurovascular dysfunction of Alzheimer Aβ peptides. Circ Res. 2017;121(3):258–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schläger C, et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature. 2016;530(7590):349–53.

    Article 
    PubMed 

    Google Scholar 

  • Herz J, et al. Role of neutrophils in exacerbation of brain injury after focal cerebral ischemia in hyperlipidemic mice. Stroke. 2015;46(10):2916–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9(6):653–60.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Greenberg SM, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol. 2009;8(2):165–74.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Charidimou A, Gang Q, Werring DJ. Sporadic cerebral amyloid angiopathy revisited: recent insights into pathophysiology and clinical spectrum. J Neurol Neurosurg Psychiatry. 2012;83(2):124–37.

    Article 
    PubMed 

    Google Scholar 

  • Liao YC, et al. NOTCH2NLC GGC repeat expansion in patients with vascular leukoencephalopathy. Stroke. 2023;54(5):1236–45.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bao L, et al. GGC repeat expansions in NOTCH2NLC cause uN2CpolyG cerebral amyloid angiopathy. Brain. 2025;148(2):467–79.

    Article 
    PubMed 

    Google Scholar 

  • Ryu JK, McLarnon JG. A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J Cell Mol Med. 2009;13(9a):2911–25.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shan Y, et al. The glucagon-like peptide-1 receptor agonist reduces inflammation and blood-brain barrier breakdown in an astrocyte-dependent manner in experimental stroke. J Neuroinflammation. 2019;16(1):242.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Orihara A, et al. Acute reversible encephalopathy with neuronal intranuclear inclusion disease diagnosed by a brain biopsy: inferring the mechanism of encephalopathy from radiological and histological findings. Intern Med. 2023;62(12):1821–5.

    Article 
    PubMed 

    Google Scholar 

  • Li YY, et al. Interactions between beta-Amyloid and pericytes in Alzheimer’s disease. Front Biosci (Landmark Ed). 2024;29(4):136.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang X, Hussain B, Chang J. Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms. CNS Neurosci Ther. 2021;27(1):36–47.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rahimifard M, et al. Targeting the TLR4 signaling pathway by polyphenols: a novel therapeutic strategy for neuroinflammation. Ageing Res Rev. 2017;36:11–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang M, et al. Blockage of VEGF function by bevacizumab alleviates early-stage cerebrovascular dysfunction and improves cognitive function in a mouse model of Alzheimer’s disease. Transl Neurodegener. 2024;13(1):1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wild CP. Complementing the genome with an exposome: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev. 2005;14(8):1847–50.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Doroszkiewicz J et al. Common and trace metals in alzheimer’s and parkinson’s diseases. Int J Mol Sci, 2023;24(21):15721.

  • Gu Y, et al. Mediterranean diet, inflammatory and metabolic biomarkers, and risk of Alzheimer’s disease. J Alzheimers Dis. 2010;22(2):483–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Flanagan E, et al. Nutrition and the ageing brain: moving towards clinical applications. Ageing Res Rev. 2020;62:101079.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gelpi E, et al. Neuronal intranuclear (hyaline) inclusion disease and fragile X-associated tremor/ataxia syndrome: a morphological and molecular dilemma. Brain. 2017;140(8):e51.

    Article 
    PubMed 

    Google Scholar 

  • Tolar M et al. Neurotoxic soluble amyloid oligomers drive alzheimer’s pathogenesis and represent a clinically validated target for slowing disease progression. Int J Mol Sci, 2021;22(12):6355.

  • Habashi M, et al. Early diagnosis and treatment of alzheimer’s disease by targeting toxic soluble Aβ oligomers. Proc Natl Acad Sci U S A. 2022;119(49):e2210766119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang ZX, et al. The essential role of soluble Aβ oligomers in alzheimer’s disease. Mol Neurobiol. 2016;53(3):1905–24.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Besedovsky L, Lange T, Haack M. The sleep-immune crosstalk in health and disease. Physiol Rev. 2019;99(3):1325–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Su WJ, et al. Antidiabetic drug glyburide modulates depressive-like behavior comorbid with insulin resistance. J Neuroinflammation. 2017;14(1):210.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10(10):717–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang J, et al. Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice. J Neuroinflammation. 2018;15(1):37.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nie R, et al. Porphyromonas gingivalis infection induces Amyloid-β accumulation in Monocytes/Macrophages. J Alzheimers Dis. 2019;72(2):479–94.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kemaladewi DU, et al. Correction of a splicing defect in a mouse model of congenital muscular dystrophy type 1A using a homology-directed-repair-independent mechanism. Nat Med. 2017;23(8):984–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sarkar S, et al. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded Huntingtin and related proteinopathies. Cell Death Differ. 2009;16(1):46–56.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grima JC, et al. Mutant Huntingtin disrupts the nuclear pore complex. Neuron. 2017;94(1):93–e1076.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading