Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, et al. Heart disease and stroke statistics-2018 update: a report from the american heart association. Circulation. 2018;137(12):67–492.
Google Scholar
Levy DE, Van Uitert RL. Delayed postischemic hypoperfusion: a potentially damaging consequence of stroke. Neurology. 1979;29(9_part_1):1245–1245.
Pound P, Gompertz P, Ebrahim S. Illness in the context of older age: the case of stroke. Sociology of health & illness. 1998;20(4):489–506.
Google Scholar
Dobkin BH. Strategies for stroke rehabilitation. The Lancet Neurology. 2004;3(9):528–36.
Google Scholar
Topham LK, Khan W, Al-Jumeily D, Hussain A. Human body pose estimation for gait identification: A comprehensive survey of datasets and models. ACM Computing Surveys. 2022;55(6):1–42.
Google Scholar
Cao Z, Simon T, Wei S-E, Sheikh Y. Realtime multi-person 2d pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017;7291–7299.
Fang H-S, Li J, Tang H, Xu C, Zhu H, Xiu Y, Li Y-L, Lu C. Alphapose: Whole-body regional multi-person pose estimation and tracking in real-time. IEEE Transaction Pattern Analysis and Machine Intelligence. 2022;45(6):7157–73.
Google Scholar
Nadeem A, Jalal A, Kim K. Automatic human posture estimation for sport activity recognition with robust body parts detection and entropy markov model. Multimedia Tools and Applications. 2021;80:21465–98.
Google Scholar
Lee K, Lee I, Lee S. Propagating lstm: 3d pose estimation based on joint interdependency. In: Proceedings of the European Conference on Computer Vision (ECCV), 2018;119–135.
Topham LK, Khan W, Al-Jumeily D, Waraich A, Hussain AJ. Gait identification using limb joint movement and deep machine learning. IEEE Access. 2022;10:100113–27.
Google Scholar
Lonini L, Moon Y, Embry K, Cotton RJ, McKenzie K, Jenz S, Jayaraman A. Video-based pose estimation for gait analysis in stroke survivors during clinical assessments: a proof-of-concept study. Digital Biomarkers. 2022;6(1):9–18.
Google Scholar
Washabaugh EP, Shanmugam TA, Ranganathan R, Krishnan C. Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics. Gait & posture. 2022;97:188–95.
Google Scholar
Shi L, Zhang Y, Cheng J, Lu H. Skeleton-based action recognition with directed graph neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019;7912–7921.
Lamontagne A, Fung J, McFadyen BJ, Faubert J. Modulation of walking speed by changing optic flow in persons with stroke. Journal of Neuro Engineering and Rehabilitation. 2007;4:1–8.
Google Scholar
De Keersmaecker E, Van Bladel A, Zaccardi S, Lefeber N, Rodriguez-Guerrero C, Kerckhofs E, Jansen B, Swinnen E. Virtual reality-enhanced walking in people post-stroke: effect of optic flow speed and level of immersion on the gait biomechanics. Journal of Neuro Engineering Rehabilitation. 2023;20(1):124.
Google Scholar
Ren J, Reyes N, Barczak A, Scogings C, Liu M. An investigation of skeleton-based optical flow-guided features for 3d action recognition using a multi-stream cnn model. In: 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), 2018;199–203.
Alfarano A, Maiano L, Papa L, Amerini I. Estimating optical flow: A comprehensive review of the state of the art. Computer Vision and Image Understanding, 2024;104160.
Li J, Wang Q. Multi-modal bioelectrical signal fusion analysis based on different acquisition devices and scene settings: Overview, challenges, and novel orientation. Information Fusion. 2022;79:229–47.
Google Scholar
Ranjan R, Ahmedt-Aristizabal D, Armin MA, Kim J. Computer vision for clinical gait analysis: A gait abnormality video dataset. arXiv preprint arXiv:2407.04190 2024.
Li H-T, Han S-L, Pan M-C. Lower-limb motion classification for hemiparetic patients through imu and emg signal processing. In: 2016 International Conference on Biomedical Engineering (BME-HUST), 2016;113–118.
Celik Y, Stuart S, Woo WL, Sejdic E, Godfrey A. Multi-modal gait: A wearable, algorithm and data fusion approach for clinical and free-living assessment. Information Fusion. 2022;78:57–70.
Google Scholar
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016;770–778.
Shi X, Chen Z, Wang H, Yeung D-Y, Wong W-K, Woo W-c. Convolutional lstm network: A machine learning approach for precipitation nowcasting. Advances in neural information processing systems 2015;28.
Cotton RJ. Kinematic tracking of rehabilitation patients with markerless pose estimation fused with wearable inertial sensors. In: 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), 2020;508–514.
Bazarevsky V, Grishchenko I, Raveendran K, Zhu T, Zhang F, Grundmann M. Blazepose: On-device real-time body pose tracking. arXiv preprint arXiv:2006.10204 2020.
Sun D, Roth S, Black MJ. Secrets of optical flow estimation and their principles. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010;2432–2439.
Lucas BD, Kanade T. An iterative image registration technique with an application to stereo vision. In: IJCAI’81: 7th International Joint Conference on Artificial Intelligence, 1981;2:674–679.
Grimm F, Kraugmann J, Naros G, Gharabaghi A. Clinical validation of kinematic assessments of post-stroke upper limb movements with a multi-joint arm exoskeleton. Journal of Neuro Engineering and Rehabilitation. 2021;18(1):92.
Google Scholar
Huang X, Liao O, Jiang S, Li J, Ma X. Kinematic analysis in post-stroke patients with moderate to severe upper limb paresis and non-disabled controls. Clinical Biomechanics. 2024;113:106206.
Google Scholar
He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14, 2016;630–645.
Rahman K, Shair E, Abdullah A, Lee T, Nazm N. Deep learning classification of gait disorders in neurodegenerative diseases among older adults using resnet-50. International Journal of Advanced Computer Science & Applications 2024;15(11).
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 2014.
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015;1–9.
Ikechukwu AV, Murali S, Deepu R, Shivamurthy R. Resnet-50 vs vgg-19 vs training from scratch: A comparative analysis of the segmentation and classification of pneumonia from chest x-ray images. Global Transitions Proceedings. 2021;2(2):375–81.
Google Scholar
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. Advances in neural information processing systems 2017;30.
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation. 1997;9(8):1735–80.
Google Scholar
Cicirelli G, Impedovo D, Dentamaro V, Marani R, Pirlo G, D’Orazio TR. Human gait analysis in neurodegenerative diseases: A review. IEEE Journal of Biomedical Health Informatics. 2021;26(1):229–42.
Google Scholar
Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, et al. An image is worth 16×16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 2020.
Yang S, Zhang J-T, Novak AC, Brouwer B, Li Q. Estimation of spatio-temporal parameters for post-stroke hemiparetic gait using inertial sensors. Gait & posture. 2013;37(3):354–8.
Google Scholar
Scheffer C, Cloete T. Inertial motion capture in conjunction with an artificial neural network can differentiate the gait patterns of hemiparetic stroke patients compared with able-bodied counterparts. Computer Methods Biomechanics and Biomedical Engineering. 2012;15(3):285–94.
Google Scholar
Repnik E, Puh U, Goljar N, Munih M, Mihelj M. Using inertial measurement units and electromyography to quantify movement during action research arm test execution. Sensors. 2018;18(9):2767.
Google Scholar
Li Y, Zhang X, Gong Y, Cheng Y, Gao X, Chen X. Motor function evaluation of hemiplegic upper-extremities using data fusion from wearable inertial and surface emg sensors. Sensors. 2017;17(3):582.
Google Scholar
Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector machines. IEEE Intelligent Systems and their applications. 1998;13(4):18–28.
Google Scholar
Eichler N, Hel-Or H, Shimshoni I, Itah D, Gross B, Raz S. 3d motion capture system for assessing patient motion during fugl-meyer stroke rehabilitation testing. IET Comput Vision. 2018;12(7):963–75.
Google Scholar
Zhou C, Feng D, Chen S, Ban N, Pan J. Portable vision-based gait assessment for post-stroke rehabilitation using an attention-based lightweight cnn. Expert Systems with Application. 2024;238:122074.
Google Scholar
Palermo M, Lopes JM, André J, Matias AC, Cerqueira J, Santos CP. A multi-camera and multimodal dataset for posture and gait analysis. Scientific data. 2022;9(1):603.
Google Scholar
Mroz S, Baddour N, McGuirk C, Juneau P, Tu A, Cheung K, Lemaire E. Comparing the quality of human pose estimation with blazepose or openpose. In: 2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART), 2021;1–4.
Jun K, Lee K, Lee S, Lee H, Kim MS. Hybrid deep neural network framework combining skeleton and gait features for pathological gait recognition. Bioengineering. 2023;10(10):1133.
Google Scholar
Khokhlova M, Migniot C, Morozov A, Sushkova O, Dipanda A. Normal and pathological gait classification lstm model. Artifical Intelligence in Medicine . 2019;94:54–66.
Google Scholar
Benson LC, Räisänen AM, Clermont CA, Ferber R. Is this the real life, or is this just laboratory? a scoping review of imu-based running gait analysis. Sensors. 2022;22(5):1722.
Google Scholar
Kim H, Kim Y-H, Kim S-J, Choi M-T. Pathological gait clustering in post-stroke patients using motion capture data. Gait & Posture. 2022;94:210–6.
Google Scholar
Mengüç Y, Park Y-L, Pei H, Vogt D, Aubin PM, Winchell E, Fluke L, Stirling L, Wood RJ, Walsh CJ. Wearable soft sensing suit for human gait measurement. The International Journal of Robotics Research. 2014;33(14):1748–64.
Google Scholar
Nakano N, Sakura T, Ueda K, Omura L, Kimura A, Iino Y, Fukashiro S, Yoshioka S. Evaluation of 3d markerless motion capture accuracy using openpose with multiple video cameras. Frontiers in sports and active living. 2020;2:50.
Google Scholar
Topham LK, Khan W, Al-Jumeily D, Waraich A, Hussain AJ. A diverse and multi-modal gait dataset of indoor and outdoor walks acquired using multiple cameras and sensors. Scientific data. 2023;10(1):320.
Google Scholar
Ranjan R, Ahmedt-Aristizabal D, Armin MA, Kim J. Computer vision for clinical gait analysis: A gait abnormality video dataset. IEEE Access. 2025;13:45321–39.
Google Scholar
Nguyen T-N, Meunier J. Walking gait dataset: point clouds, skeletons and silhouettes. DIRO, University of Montreal, Tech. Rep 2018;1379.
Burnfield M. Gait analysis: normal and pathological function. Journal of Sports Science and Medicine. 2010;9(2):353.
Hanlon M, Anderson R. Real-time gait event detection using wearable sensors. Gait & posture. 2009;30(4):523–7.
Google Scholar
Rowe E, Beauchamp MK, Wilson JA. Age and sex differences in normative gait patterns. Gait & posture. 2021;88:109–15.
Google Scholar
Dosovitskiy A, Fischer P, Ilg E, Hausser P, Hazirbas C, Golkov V, Van Der Smagt P, Cremers D, Brox T. Flownet: Learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, 2015;2758–2766.
Sun D, Yang X, Liu M-Y, Kautz J. Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018;8934–8943.
Teed Z, Deng J. Raft: Recurrent all-pairs field transforms for optical flow. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16, 2020;402–419. Springer