Arzumanian VA, Dolgalev GV, Kurbatov IY, Kiseleva OI, Poverennaya EV. Epitranscriptome: review of top 25 most-studied RNA modifications. Int J Mol Sci. 2022;23(22):13851. https://doi.org/10.3390/ijms232213851.
Kiss T. NEW EMBO member’s review: small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J. 2001;20(14):3617–22. https://doi.org/10.1093/emboj/20.14.3617.
Somme J, Van Laer B, Roovers M, Steyaert J, Versées W, Droogmans L. Characterization of two homologous 2′-O-methyltransferases showing different specificities for their tRNA substrates. RNA. 2014;20:1257–71. https://doi.org/10.1261/rna.044503.114.
Rebane A, Roomere H, Metspalu A. Locations of several novel 2’-O-methylated nucleotides in human 28S rRNA. BMC Mol Biol. 2002;3:1. https://doi.org/10.1186/1471-2199-3-1.
Darzacq X. Cajal body-specific small nuclear RNAs: a novel class of 2’-O-methylation and pseudouridylation guide RNAs. EMBO J. 2002;21(11):2746–56. https://doi.org/10.1093/emboj/21.11.2746.
Li J, Yang Z, Yu B, Liu J, Chen X. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol. 2005;15(16):1501–7. https://doi.org/10.1016/j.cub.2005.07.029.
Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, et al. Methylation as a crucial step in plant microRNA biogenesis. Science. 2005;307:932–5. https://doi.org/10.1126/science.1107130.
Dai Q, Moshitch-Moshkovitz S, Han D, Kol N, Amariglio N, Rechavi G, et al. Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nat Methods. 2017;14:695–8. https://doi.org/10.1038/nmeth.4294.
Daffis S, Szretter KJ, Schriewer J, Li J, Youn S, Errett J, et al. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature. 2010;468:452–6. https://doi.org/10.1038/nature09489.
Lin J, Lai S, Jia R, Xu A, Zhang L, Lu J, et al. Structural basis for site-specific ribose methylation by box C/D RNA protein complexes. Nature. 2011;469:559–63. https://doi.org/10.1038/nature09688.
Züst R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW, Ziebuhr J, et al. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol. 2011;12:137–43. https://doi.org/10.1038/ni.1979.
Ringeard M, Marchand V, Decroly E, Motorin Y, Bennasser Y. FTSJ3 is an RNA 2′-O-methyltransferase recruited by HIV to avoid innate immune sensing. Nature. 2019;565:500–4. https://doi.org/10.1038/s41586-018-0841-4.
Gehrig S, Eberle M-E, Botschen F, Rimbach K, Eberle F, Eigenbrod T, et al. Identification of modifications in microbial, native tRNA that suppress immunostimulatory activity. J Exp Med. 2012;209(2):225–33. https://doi.org/10.1084/jem.20111044.
Rimbach K, Kaiser S, Helm M, Dalpke AH, Eigenbrod T. 2’-O-methylation within bacterial RNA acts as suppressor of TLR7/TLR8 activation in human innate immune cells. J Innate Immun. 2015;7:482–93. https://doi.org/10.1159/000375460.
Huang C, Yu Y-T. Targeted 2′-O methylation at a nucleotide within the pseudoknot of telomerase RNA reduces telomerase activity in vivo. Mol Cell Biol. 2010;30(18):4368–78. https://doi.org/10.1128/MCB.00384-10.
Dimitrova DG, Teysset L, Carré C. RNA 2′-O-methylation (Nm) modification in human diseases. Genes. 2019;10:117. https://doi.org/10.3390/genes10020117.
Encinar JA, Menendez JA. Potential drugs targeting early innate immune evasion of SARS-Coronavirus 2 via 2’-O-methylation of viral RNA. Viruses. 2020;12:525. https://doi.org/10.3390/v12050525.
Tang Q, Li L, Wang Y, Wu P, Hou X, Ouyang J, et al. RNA modifications in cancer. Br J Cancer. 2023;129:204–21. https://doi.org/10.1038/s41416-023-02275-1.
Gatsiou A, Stellos K. RNA modifications in cardiovascular health and disease. Nat Rev Cardiol. 2023;20:325–46. https://doi.org/10.1038/s41569-022-00804-8.
Paramasivam A. RNA 2′-O-methylation modification and its implication in COVID-19 immunity. Cell Death Discov. 2020;6:118. https://doi.org/10.1038/s41420-020-00358-z.
Krogh N, Jansson MD, Häfner SJ, Tehler D, Birkedal U, Christensen-Dalsgaard M, et al. Profiling of 2′- O -Me in human rRNA reveals a subset of fractionally modified positions and provides evidence for ribosome heterogeneity. Nucleic Acids Res. 2016;44:7884–95. https://doi.org/10.1093/nar/gkw482.
Erales J, Marchand V, Panthu B, Gillot S, Belin S, Ghayad SE, et al. Evidence for rRNA 2′-O-methylation plasticity: control of intrinsic translational capabilities of human ribosomes. Proc Natl Acad Sci USA. 2017;114(49):12934–9. https://doi.org/10.1073/pnas.1707674114.
Sharma S, Marchand V, Motorin Y, Lafontaine DLJ. Identification of sites of 2′-O-methylation vulnerability in human ribosomal RNAs by systematic mapping. Sci Rep. 2017;7:11490. https://doi.org/10.1038/s41598-017-09734-9.
Zhou F, Liu Y, Rohde C, Pauli C, Gerloff D, Köhn M, et al. AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce self-renewal and leukaemia. Nat Cell Biol. 2017;19:844–55. https://doi.org/10.1038/ncb3563.
Zhu Y, Pirnie SP, Carmichael GG. High-throughput and site-specific identification of 2′- O -methylation sites using ribose oxidation sequencing (RibOxi-seq). RNA. 2017;23:1303–14. https://doi.org/10.1261/rna.061549.117.
Sun W-J, Li J-H, Liu S, Wu J, Zhou H, Qu L-H, et al. RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data. Nucleic Acids Res. 2016;44:D259–65. https://doi.org/10.1093/nar/gkv1036.
Chen W, Feng P, Tang H, Ding H, Lin H. Identifying 2′-O-methylationation sites by integrating nucleotide chemical properties and nucleotide compositions. Genomics. 2016;107:255–8. https://doi.org/10.1016/j.ygeno.2016.05.003.
Yang H, Lv H, Ding H, Chen W, Lin H. iRNA-2OM: a sequence-based predictor for identifying 2′-O-methylation sites in Homo sapiens. J Comput Biol. 2018;25(11):1266–77. https://doi.org/10.1089/cmb.2018.0004.
Tahir M, Tayara H, Chong KT. iRNA-PseKNC(2methyl): identify RNA 2’-O-methylation sites by convolution neural network and Chou’s pseudo components. J Theor Biol. 2019;465:1–6. https://doi.org/10.1016/j.jtbi.2018.12.034.
Mostavi M, Salekin S, Huang Y. Deep-2’-O-Me: Predicting 2’-O-methylation sites by Convolutional Neural Networks. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2018. p. 2394–7. https://doi.org/10.1109/EMBC.2018.8512780.
Zhou Y, Cui Q, Zhou Y. NmSEER: a prediction tool for 2’-O-Methylation (Nm) sites based on random forest. In: Huang D-S, Bevilacqua V, Premaratne P, Gupta P, editors. Intelligent computing theories and application. Cham: Springer International Publishing; 2018. p. 893–900. https://doi.org/10.1007/978-3-319-95930-6_90.
Zhou Y, Cui Q, Zhou Y. NmSEER v2.0: a prediction tool for 2′-O-methylation sites based on random forest and multi-encoding combination. BMC Bioinform. 2019;20:690. https://doi.org/10.1186/s12859-019-3265-8.
Li H, Chen L, Huang Z, Luo X, Li H, Ren J, et al. DeepOMe: a web server for the prediction of 2′-O-Me sites based on the hybrid CNN and BLSTM architecture. Front Cell Dev Biol. 2021;9:686894. https://doi.org/10.3389/fcell.2021.686894.
Ao C, Zou Q, Yu L. NmRF: identification of multispecies RNA 2’-O-methylation modification sites from RNA sequences. Brief Bioinform. 2022;23:bbab480. https://doi.org/10.1093/bib/bbab480.
Soylu NN, Sefer E. BERT2OME: prediction of 2′-O-methylation modifications from RNA sequence by transformer architecture based on BERT. IEEE ACM Trans Comput Biol Bioinform. 2023;20(3):2177–89. https://doi.org/10.1109/TCBB.2023.3237769.
Yang Y-H, Ma C-Y, Gao D, Liu X-W, Yuan S-S, Ding H. i2OM: toward a better prediction of 2′-O-methylation in human RNA. Int J Biol Macromol. 2023;239:124247. https://doi.org/10.1016/j.ijbiomac.2023.124247.
Pham NT, Rakkiyapan R, Park J, Malik A, Manavalan B. H2Opred: a robust and efficient hybrid deep learning model for predicting 2’-O-methylation sites in human RNA. Brief Bioinform. 2023;25:bbad476. https://doi.org/10.1093/bib/bbad476.
Harun-Or-Roshid Md Md, Pham NT, Manavalan B, Kurata H. Meta-2OM: a multi-classifier meta-model for the accurate prediction of RNA 2′-O-methylation sites in human RNA. PLoS ONE. 2024;19:e0305406. https://doi.org/10.1371/journal.pone.0305406.
Geng Y-Q, Lai F-L, Luo H, Gao F. Nmix: a hybrid deep learning model for precise prediction of 2’-O-methylation sites based on multi-feature fusion and ensemble learning. Brief Bioinform. 2024;25:bbae601. https://doi.org/10.1093/bib/bbae601.
Zhang W-Y, Xu J, Wang J, Zhou Y-K, Chen W, Du P-F. KNIndex: a comprehensive database of physicochemical properties for k -tuple nucleotides. Brief Bioinform. 2021;22:bbaa284. https://doi.org/10.1093/bib/bbaa284.
Choi M, Kim H, Han B, Xu N, Lee KM. Channel attention is all you need for video frame interpolation. Proc AAAI Conf Artif Intell. 2020;34:10663–71. https://doi.org/10.1609/aaai.v34i07.6693.
Zhang H, Zhu Y, Wang D, Zhang L, Chen T, Wang Z, et al. A survey on visual Mamba. Appl Sci. 2024;14(13):5683. https://doi.org/10.3390/app14135683.
Lin T, Wang Y, Liu X, Qiu X. A survey of transformers. AI Open. 2022;3:111–32. https://doi.org/10.1016/j.aiopen.2022.10.001.
Yeung M, Sala E, Schönlieb C-B, Rundo L. Unified focal loss: generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation. Comput Med Imaging Graph. 2022;95:102026. https://doi.org/10.1016/j.compmedimag.2021.102026.
Du R, Xie S, Fang Y, Hagino S, Yamamoto S, Moriyama M, et al. Validation of soft labels in developing deep learning algorithms for detecting lesions of myopic maculopathy from optical coherence tomographic images. Asia Pac J Ophthalmol. 2022;11(3):227–36. https://doi.org/10.1097/apo.0000000000000466.
Dave I, Gupta R, Rizve MN, Shah M. TCLR: temporal contrastive learning for video representation. Comput Vis Image Underst. 2022;219:103406. https://doi.org/10.1016/j.cviu.2022.103406.
Wen L, Li X, Gao L. A transfer convolutional neural network for fault diagnosis based on ResNet-50. Neural Comput Appl. 2020;32:6111–24. https://doi.org/10.1007/s00521-019-04097-w.
Zhou D-X. Theory of deep convolutional neural networks: downsampling. Neural Netw. 2020;124:319–27. https://doi.org/10.1016/j.neunet.2020.01.018.
Xuan J, Chen L, Chen Z, Pang J, Huang J, Lin J, et al. RMBase v3.0: decode the landscape, mechanisms and functions of RNA modifications. Nucleic Acids Res. 2024;52:D273–84. https://doi.org/10.1093/nar/gkad1070.
Rodríguez P, Bautista MA, Gonzàlez J, Escalera S. Beyond one-hot encoding: lower dimensional target embedding. Image Vis Comput. 2018;75:21–31. https://doi.org/10.1016/j.imavis.2018.04.004.
Nguyen-Vo T-H, Nguyen QH, Do TTT, Nguyen T-N, Rahardja S, Nguyen BP. iPseU-NCP: identifying RNA pseudouridine sites using random forest and NCP-encoded features. BMC Genomics. 2019;20:971. https://doi.org/10.1186/s12864-019-6357-y.
Danilevicz MF, Gill M, Fernandez CGT, Petereit J, Upadhyaya SR, Batley J, et al. Dnabert-based explainable lncRNA identification in plant genome assemblies. Comput Struct Biotechnol J. 2023;21:5676–85. https://doi.org/10.1016/j.csbj.2023.11.025.
Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021;8:53. https://doi.org/10.1186/s40537-021-00444-8.
Diaz-Papkovich A, Anderson-Trocmé L, Gravel S. A review of UMAP in population genetics. J Hum Genet. 2021;66:85–91. https://doi.org/10.1038/s10038-020-00851-4.
Zeng J, Giese TJ, Zhang D, Wang H, York DM. DeePMD-GNN: a DeePMD-kit plugin for external graph neural network potentials. J Chem Inf Model. 2025;65:3154–60. https://doi.org/10.1021/acs.jcim.4c02441.
Salmani Pour Avval S, Eskue ND, Groves RM, Yaghoubi V. Systematic review on neural architecture search. Artif Intell Rev. 2025;58:73. https://doi.org/10.1007/s10462-024-11058-w.
Song Z, Huang D, Song B, Chen K, Song Y, Liu G, et al. Attention-based multi-label neural networks for integrated prediction and interpretation of twelve widely occurring RNA modifications. Nat Commun. 2021;12:4011. https://doi.org/10.1038/s41467-021-24313-3.
Song Y, Wang Y, Wang X, Huang D, Nguyen A, Meng J. Multi-task adaptive pooling enabled synergetic learning of RNA modification across tissue, type and species from low-resolution epitranscriptomes. Brief Bioinform. 2023;24:bbad105. https://doi.org/10.1093/bib/bbad105.
Zhang Y, Wang Z, Zhang Y, Li S, Guo Y, Song J, et al. Interpretable prediction models for widespread m6A RNA modification across cell lines and tissues. Bioinformatics. 2023;39:btad709. https://doi.org/10.1093/bioinformatics/btad709.
Song Y, Song B, Huang D, Nguyen A, Hu L, Meng J, et al. Multimodal zero-shot learning of previously unseen epitranscriptomes from RNA-seq data. Brief Bioinform. 2025;26:bbaf332. https://doi.org/10.1093/bib/bbaf332.
