OMetaNet: an efficient hybrid deep learning model based on multimodal data fusion and contrastive learning for predicting 2ʹ-O-methylation sites in human RNA | BMC Bioinformatics

  • Arzumanian VA, Dolgalev GV, Kurbatov IY, Kiseleva OI, Poverennaya EV. Epitranscriptome: review of top 25 most-studied RNA modifications. Int J Mol Sci. 2022;23(22):13851. https://doi.org/10.3390/ijms232213851.

    Google Scholar 

  • Kiss T. NEW EMBO member’s review: small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J. 2001;20(14):3617–22. https://doi.org/10.1093/emboj/20.14.3617.

    Google Scholar 

  • Somme J, Van Laer B, Roovers M, Steyaert J, Versées W, Droogmans L. Characterization of two homologous 2′-O-methyltransferases showing different specificities for their tRNA substrates. RNA. 2014;20:1257–71. https://doi.org/10.1261/rna.044503.114.

    Google Scholar 

  • Rebane A, Roomere H, Metspalu A. Locations of several novel 2’-O-methylated nucleotides in human 28S rRNA. BMC Mol Biol. 2002;3:1. https://doi.org/10.1186/1471-2199-3-1.

    Google Scholar 

  • Darzacq X. Cajal body-specific small nuclear RNAs: a novel class of 2’-O-methylation and pseudouridylation guide RNAs. EMBO J. 2002;21(11):2746–56. https://doi.org/10.1093/emboj/21.11.2746.

    Google Scholar 

  • Li J, Yang Z, Yu B, Liu J, Chen X. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol. 2005;15(16):1501–7. https://doi.org/10.1016/j.cub.2005.07.029.

    Google Scholar 

  • Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, et al. Methylation as a crucial step in plant microRNA biogenesis. Science. 2005;307:932–5. https://doi.org/10.1126/science.1107130.

    Google Scholar 

  • Dai Q, Moshitch-Moshkovitz S, Han D, Kol N, Amariglio N, Rechavi G, et al. Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nat Methods. 2017;14:695–8. https://doi.org/10.1038/nmeth.4294.

    Google Scholar 

  • Daffis S, Szretter KJ, Schriewer J, Li J, Youn S, Errett J, et al. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature. 2010;468:452–6. https://doi.org/10.1038/nature09489.

    Google Scholar 

  • Lin J, Lai S, Jia R, Xu A, Zhang L, Lu J, et al. Structural basis for site-specific ribose methylation by box C/D RNA protein complexes. Nature. 2011;469:559–63. https://doi.org/10.1038/nature09688.

    Google Scholar 

  • Züst R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW, Ziebuhr J, et al. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol. 2011;12:137–43. https://doi.org/10.1038/ni.1979.

    Google Scholar 

  • Ringeard M, Marchand V, Decroly E, Motorin Y, Bennasser Y. FTSJ3 is an RNA 2′-O-methyltransferase recruited by HIV to avoid innate immune sensing. Nature. 2019;565:500–4. https://doi.org/10.1038/s41586-018-0841-4.

    Google Scholar 

  • Gehrig S, Eberle M-E, Botschen F, Rimbach K, Eberle F, Eigenbrod T, et al. Identification of modifications in microbial, native tRNA that suppress immunostimulatory activity. J Exp Med. 2012;209(2):225–33. https://doi.org/10.1084/jem.20111044.

    Google Scholar 

  • Rimbach K, Kaiser S, Helm M, Dalpke AH, Eigenbrod T. 2’-O-methylation within bacterial RNA acts as suppressor of TLR7/TLR8 activation in human innate immune cells. J Innate Immun. 2015;7:482–93. https://doi.org/10.1159/000375460.

    Google Scholar 

  • Huang C, Yu Y-T. Targeted 2′-O methylation at a nucleotide within the pseudoknot of telomerase RNA reduces telomerase activity in vivo. Mol Cell Biol. 2010;30(18):4368–78. https://doi.org/10.1128/MCB.00384-10.

    Google Scholar 

  • Dimitrova DG, Teysset L, Carré C. RNA 2′-O-methylation (Nm) modification in human diseases. Genes. 2019;10:117. https://doi.org/10.3390/genes10020117.

    Google Scholar 

  • Encinar JA, Menendez JA. Potential drugs targeting early innate immune evasion of SARS-Coronavirus 2 via 2’-O-methylation of viral RNA. Viruses. 2020;12:525. https://doi.org/10.3390/v12050525.

    Google Scholar 

  • Tang Q, Li L, Wang Y, Wu P, Hou X, Ouyang J, et al. RNA modifications in cancer. Br J Cancer. 2023;129:204–21. https://doi.org/10.1038/s41416-023-02275-1.

    Google Scholar 

  • Gatsiou A, Stellos K. RNA modifications in cardiovascular health and disease. Nat Rev Cardiol. 2023;20:325–46. https://doi.org/10.1038/s41569-022-00804-8.

    Google Scholar 

  • Paramasivam A. RNA 2′-O-methylation modification and its implication in COVID-19 immunity. Cell Death Discov. 2020;6:118. https://doi.org/10.1038/s41420-020-00358-z.

    Google Scholar 

  • Krogh N, Jansson MD, Häfner SJ, Tehler D, Birkedal U, Christensen-Dalsgaard M, et al. Profiling of 2′- O -Me in human rRNA reveals a subset of fractionally modified positions and provides evidence for ribosome heterogeneity. Nucleic Acids Res. 2016;44:7884–95. https://doi.org/10.1093/nar/gkw482.

    Google Scholar 

  • Erales J, Marchand V, Panthu B, Gillot S, Belin S, Ghayad SE, et al. Evidence for rRNA 2′-O-methylation plasticity: control of intrinsic translational capabilities of human ribosomes. Proc Natl Acad Sci USA. 2017;114(49):12934–9. https://doi.org/10.1073/pnas.1707674114.

    Google Scholar 

  • Sharma S, Marchand V, Motorin Y, Lafontaine DLJ. Identification of sites of 2′-O-methylation vulnerability in human ribosomal RNAs by systematic mapping. Sci Rep. 2017;7:11490. https://doi.org/10.1038/s41598-017-09734-9.

    Google Scholar 

  • Zhou F, Liu Y, Rohde C, Pauli C, Gerloff D, Köhn M, et al. AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce self-renewal and leukaemia. Nat Cell Biol. 2017;19:844–55. https://doi.org/10.1038/ncb3563.

    Google Scholar 

  • Zhu Y, Pirnie SP, Carmichael GG. High-throughput and site-specific identification of 2′- O -methylation sites using ribose oxidation sequencing (RibOxi-seq). RNA. 2017;23:1303–14. https://doi.org/10.1261/rna.061549.117.

    Google Scholar 

  • Sun W-J, Li J-H, Liu S, Wu J, Zhou H, Qu L-H, et al. RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data. Nucleic Acids Res. 2016;44:D259–65. https://doi.org/10.1093/nar/gkv1036.

    Google Scholar 

  • Chen W, Feng P, Tang H, Ding H, Lin H. Identifying 2′-O-methylationation sites by integrating nucleotide chemical properties and nucleotide compositions. Genomics. 2016;107:255–8. https://doi.org/10.1016/j.ygeno.2016.05.003.

    Google Scholar 

  • Yang H, Lv H, Ding H, Chen W, Lin H. iRNA-2OM: a sequence-based predictor for identifying 2′-O-methylation sites in Homo sapiens. J Comput Biol. 2018;25(11):1266–77. https://doi.org/10.1089/cmb.2018.0004.

    Google Scholar 

  • Tahir M, Tayara H, Chong KT. iRNA-PseKNC(2methyl): identify RNA 2’-O-methylation sites by convolution neural network and Chou’s pseudo components. J Theor Biol. 2019;465:1–6. https://doi.org/10.1016/j.jtbi.2018.12.034.

    Google Scholar 

  • Mostavi M, Salekin S, Huang Y. Deep-2’-O-Me: Predicting 2’-O-methylation sites by Convolutional Neural Networks. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2018. p. 2394–7. https://doi.org/10.1109/EMBC.2018.8512780.

  • Zhou Y, Cui Q, Zhou Y. NmSEER: a prediction tool for 2’-O-Methylation (Nm) sites based on random forest. In: Huang D-S, Bevilacqua V, Premaratne P, Gupta P, editors. Intelligent computing theories and application. Cham: Springer International Publishing; 2018. p. 893–900. https://doi.org/10.1007/978-3-319-95930-6_90.

    Google Scholar 

  • Zhou Y, Cui Q, Zhou Y. NmSEER v2.0: a prediction tool for 2′-O-methylation sites based on random forest and multi-encoding combination. BMC Bioinform. 2019;20:690. https://doi.org/10.1186/s12859-019-3265-8.

    Google Scholar 

  • Li H, Chen L, Huang Z, Luo X, Li H, Ren J, et al. DeepOMe: a web server for the prediction of 2′-O-Me sites based on the hybrid CNN and BLSTM architecture. Front Cell Dev Biol. 2021;9:686894. https://doi.org/10.3389/fcell.2021.686894.

    Google Scholar 

  • Ao C, Zou Q, Yu L. NmRF: identification of multispecies RNA 2’-O-methylation modification sites from RNA sequences. Brief Bioinform. 2022;23:bbab480. https://doi.org/10.1093/bib/bbab480.

    Google Scholar 

  • Soylu NN, Sefer E. BERT2OME: prediction of 2′-O-methylation modifications from RNA sequence by transformer architecture based on BERT. IEEE ACM Trans Comput Biol Bioinform. 2023;20(3):2177–89. https://doi.org/10.1109/TCBB.2023.3237769.

    Google Scholar 

  • Yang Y-H, Ma C-Y, Gao D, Liu X-W, Yuan S-S, Ding H. i2OM: toward a better prediction of 2′-O-methylation in human RNA. Int J Biol Macromol. 2023;239:124247. https://doi.org/10.1016/j.ijbiomac.2023.124247.

    Google Scholar 

  • Pham NT, Rakkiyapan R, Park J, Malik A, Manavalan B. H2Opred: a robust and efficient hybrid deep learning model for predicting 2’-O-methylation sites in human RNA. Brief Bioinform. 2023;25:bbad476. https://doi.org/10.1093/bib/bbad476.

    Google Scholar 

  • Harun-Or-Roshid Md Md, Pham NT, Manavalan B, Kurata H. Meta-2OM: a multi-classifier meta-model for the accurate prediction of RNA 2′-O-methylation sites in human RNA. PLoS ONE. 2024;19:e0305406. https://doi.org/10.1371/journal.pone.0305406.

    Google Scholar 

  • Geng Y-Q, Lai F-L, Luo H, Gao F. Nmix: a hybrid deep learning model for precise prediction of 2’-O-methylation sites based on multi-feature fusion and ensemble learning. Brief Bioinform. 2024;25:bbae601. https://doi.org/10.1093/bib/bbae601.

    Google Scholar 

  • Zhang W-Y, Xu J, Wang J, Zhou Y-K, Chen W, Du P-F. KNIndex: a comprehensive database of physicochemical properties for k -tuple nucleotides. Brief Bioinform. 2021;22:bbaa284. https://doi.org/10.1093/bib/bbaa284.

    Google Scholar 

  • Choi M, Kim H, Han B, Xu N, Lee KM. Channel attention is all you need for video frame interpolation. Proc AAAI Conf Artif Intell. 2020;34:10663–71. https://doi.org/10.1609/aaai.v34i07.6693.

    Google Scholar 

  • Zhang H, Zhu Y, Wang D, Zhang L, Chen T, Wang Z, et al. A survey on visual Mamba. Appl Sci. 2024;14(13):5683. https://doi.org/10.3390/app14135683.

    Google Scholar 

  • Lin T, Wang Y, Liu X, Qiu X. A survey of transformers. AI Open. 2022;3:111–32. https://doi.org/10.1016/j.aiopen.2022.10.001.

    Google Scholar 

  • Yeung M, Sala E, Schönlieb C-B, Rundo L. Unified focal loss: generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation. Comput Med Imaging Graph. 2022;95:102026. https://doi.org/10.1016/j.compmedimag.2021.102026.

    Google Scholar 

  • Du R, Xie S, Fang Y, Hagino S, Yamamoto S, Moriyama M, et al. Validation of soft labels in developing deep learning algorithms for detecting lesions of myopic maculopathy from optical coherence tomographic images. Asia Pac J Ophthalmol. 2022;11(3):227–36. https://doi.org/10.1097/apo.0000000000000466.

    Google Scholar 

  • Dave I, Gupta R, Rizve MN, Shah M. TCLR: temporal contrastive learning for video representation. Comput Vis Image Underst. 2022;219:103406. https://doi.org/10.1016/j.cviu.2022.103406.

    Google Scholar 

  • Wen L, Li X, Gao L. A transfer convolutional neural network for fault diagnosis based on ResNet-50. Neural Comput Appl. 2020;32:6111–24. https://doi.org/10.1007/s00521-019-04097-w.

    Google Scholar 

  • Zhou D-X. Theory of deep convolutional neural networks: downsampling. Neural Netw. 2020;124:319–27. https://doi.org/10.1016/j.neunet.2020.01.018.

    Google Scholar 

  • Xuan J, Chen L, Chen Z, Pang J, Huang J, Lin J, et al. RMBase v3.0: decode the landscape, mechanisms and functions of RNA modifications. Nucleic Acids Res. 2024;52:D273–84. https://doi.org/10.1093/nar/gkad1070.

    Google Scholar 

  • Rodríguez P, Bautista MA, Gonzàlez J, Escalera S. Beyond one-hot encoding: lower dimensional target embedding. Image Vis Comput. 2018;75:21–31. https://doi.org/10.1016/j.imavis.2018.04.004.

    Google Scholar 

  • Nguyen-Vo T-H, Nguyen QH, Do TTT, Nguyen T-N, Rahardja S, Nguyen BP. iPseU-NCP: identifying RNA pseudouridine sites using random forest and NCP-encoded features. BMC Genomics. 2019;20:971. https://doi.org/10.1186/s12864-019-6357-y.

    Google Scholar 

  • Danilevicz MF, Gill M, Fernandez CGT, Petereit J, Upadhyaya SR, Batley J, et al. Dnabert-based explainable lncRNA identification in plant genome assemblies. Comput Struct Biotechnol J. 2023;21:5676–85. https://doi.org/10.1016/j.csbj.2023.11.025.

    Google Scholar 

  • Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021;8:53. https://doi.org/10.1186/s40537-021-00444-8.

    Google Scholar 

  • Diaz-Papkovich A, Anderson-Trocmé L, Gravel S. A review of UMAP in population genetics. J Hum Genet. 2021;66:85–91. https://doi.org/10.1038/s10038-020-00851-4.

    Google Scholar 

  • Zeng J, Giese TJ, Zhang D, Wang H, York DM. DeePMD-GNN: a DeePMD-kit plugin for external graph neural network potentials. J Chem Inf Model. 2025;65:3154–60. https://doi.org/10.1021/acs.jcim.4c02441.

    Google Scholar 

  • Salmani Pour Avval S, Eskue ND, Groves RM, Yaghoubi V. Systematic review on neural architecture search. Artif Intell Rev. 2025;58:73. https://doi.org/10.1007/s10462-024-11058-w.

    Google Scholar 

  • Song Z, Huang D, Song B, Chen K, Song Y, Liu G, et al. Attention-based multi-label neural networks for integrated prediction and interpretation of twelve widely occurring RNA modifications. Nat Commun. 2021;12:4011. https://doi.org/10.1038/s41467-021-24313-3.

    Google Scholar 

  • Song Y, Wang Y, Wang X, Huang D, Nguyen A, Meng J. Multi-task adaptive pooling enabled synergetic learning of RNA modification across tissue, type and species from low-resolution epitranscriptomes. Brief Bioinform. 2023;24:bbad105. https://doi.org/10.1093/bib/bbad105.

    Google Scholar 

  • Zhang Y, Wang Z, Zhang Y, Li S, Guo Y, Song J, et al. Interpretable prediction models for widespread m6A RNA modification across cell lines and tissues. Bioinformatics. 2023;39:btad709. https://doi.org/10.1093/bioinformatics/btad709.

    Google Scholar 

  • Song Y, Song B, Huang D, Nguyen A, Hu L, Meng J, et al. Multimodal zero-shot learning of previously unseen epitranscriptomes from RNA-seq data. Brief Bioinform. 2025;26:bbaf332. https://doi.org/10.1093/bib/bbaf332.

    Google Scholar 

  • Continue Reading