A post-starburst pathway for the formation of massive galaxies and black holes at z > 6

  • Rigby, J. et al. The science performance of JWST as characterized in commissioning. Publ. Astron. Soc. Pac. 135, 048001 (2023).

    ADS 

    Google Scholar 

  • Kennicutt, R. C. & Evans, N. J. Star formation in the Milky Way and nearby galaxies. Annu. Rev. Astron. Astrophys. 50, 531–608 (2012).

    ADS 

    Google Scholar 

  • Carnall, A. C., McLure, R. J., Dunlop, J. S. & Davé, R. Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).

    ADS 

    Google Scholar 

  • Carnall, A. C. et al. The VANDELS survey: the star-formation histories of massive quiescent galaxies at 1.0 < z < 1.3. Mon. Not. R. Astron. Soc. 490, 417–439 (2019).

    ADS 

    Google Scholar 

  • Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001).

    ADS 

    Google Scholar 

  • Leja, J., Carnall, A. C., Johnson, B. D., Conroy, C. & Speagle, J. S. How to measure galaxy star formation histories. II. Nonparametric models. Astrophys. J. 876, 3 (2019).

    ADS 

    Google Scholar 

  • Pacifici, C. et al. The evolution of star formation histories of quiescent galaxies. Astrophys. J. 832, 79 (2016).

    ADS 

    Google Scholar 

  • Carnall, A. C. et al. A massive quiescent galaxy at redshift 4.658. Nature 619, 716–719 (2023).

    ADS 

    Google Scholar 

  • de Graaff, A. et al. Efficient formation of a massive quiescent galaxy at redshift 4.9. Nat. Astron. 9, 280–292 (2025).

    Google Scholar 

  • Weibel, A. et al. RUBIES reveals a massive quiescent galaxy at z = 7.3. Astrophys. J. 983, 11 (2025).

    Google Scholar 

  • Maiolino, R. et al. A small and vigorous black hole in the early Universe. Nature 627, 59–63 (2024).

    ADS 

    Google Scholar 

  • Goulding, A. D. et al. UNCOVER: the growth of the first massive black holes from JWST/NIRSpec-spectroscopic redshift confirmation of an X-ray luminous AGN at z = 10.1. Astrophys. J. Lett. 955, L24 (2023).

    ADS 

    Google Scholar 

  • Zhang, H. et al. TRINITY IV: predictions for supermassive black holes at z  6. Mon. Not. R. Astron. Soc. 531, 4974–4989 (2024).

    Google Scholar 

  • Scoggins, M. T. & Haiman, Z. Diagnosing the massive-seed pathway to high-redshift black holes: statistics of the evolving black hole to host galaxy mass ratio. Mon. Not. R. Astron. Soc. 531, 4584–4597 (2024).

    ADS 

    Google Scholar 

  • Li, W., Inayoshi, K., Onoue, M. & Toyouchi, D. The assembly of black hole mass and luminosity functions of high-redshift quasars via multiple accretion episodes. Astrophys. J. 950, 85 (2023).

    ADS 

    Google Scholar 

  • Davies, F. B., Hennawi, J. F. & Eilers, A.-C. Evidence for low radiative efficiency or highly obscured growth of z > 7 quasars. Astrophys. J. Lett. 884, L19 (2019).

    ADS 

    Google Scholar 

  • Eilers, A.-C. et al. EIGER VI. The correlation function, host halo mass and duty cycle of luminous quasars at z > 6. Astrophys. J. 974, 275 (2024).

    Google Scholar 

  • Davies, R. I. et al. A close look at star formation around active galactic nuclei. Astrophys. J. 671, 1388–1412 (2007).

    ADS 

    Google Scholar 

  • Wild, V., Heckman, T. & Charlot, S. Timing the starburst-AGN connection. Mon. Not. R. Astron. Soc. 405, 933–947 (2010).

    ADS 

    Google Scholar 

  • Maiolino, R. et al. JADES: the diverse population of infant black holes at 4 < z < 11: merging, tiny, poor, but mighty. Astron. Astrophys. 691, A145 (2024).

    Google Scholar 

  • Lupi, A., Quadri, G., Volonteri, M., Colpi, M. & Regan, J. A. Sustained super-Eddington accretion in high-redshift quasars. Astron. Astrophys. 686, A256 (2024).

    ADS 

    Google Scholar 

  • Tanaka, M. et al. Stellar velocity dispersion of a massive quenching galaxy at z = 4.01. Astrophys. J. Lett. 885, L34 (2019).

    ADS 

    Google Scholar 

  • Looser, T. J. et al. A recently quenched galaxy 700 million years after the Big Bang. Nature 629, 53–57 (2024).

    ADS 

    Google Scholar 

  • Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013).

    ADS 

    Google Scholar 

  • Ito, K. et al. COSMOS2020: ubiquitous AGN activity of massive quiescent galaxies at 0 < z < 5 revealed by X-ray and radio stacking. Astrophys. J. 929, 53 (2022).

    ADS 

    Google Scholar 

  • Belli, S. et al. Star formation shut down by multiphase gas outflow in a galaxy at a redshift of 2.45. Nature 630, 54–58 (2024).

    ADS 

    Google Scholar 

  • D’Eugenio, F. et al. A fast-rotator post-starburst galaxy quenched by supermassive black-hole feedback at z = 3. Nat. Astron. 8, 1443–1456 (2024).

    Google Scholar 

  • Arita, J. et al. Subaru high-z exploration of low-luminosity quasars (SHELLQs). XVIII. The dark matter halo mass of quasars at z ~ 6. Astrophys. J. 954, 210 (2023).

    ADS 

    Google Scholar 

  • Decarli, R. et al. An ALMA [C ii] survey of 27 quasars at z > 5.94. Astrophys. J. 854, 97 (2018).

    ADS 

    Google Scholar 

  • Walter, F. et al. ALMA 200 pc imaging of a z ~ 7 quasar reveals a compact, disk-like host galaxy. Astrophys. J. 927, 21 (2022).

    ADS 

    Google Scholar 

  • Matsuoka, Y. et al. Subaru high-z exploration of low-luminosity quasars (SHELLQs). I. Discovery of 15 quasars and bright galaxies at 5.7 < z < 6.9. Astrophys. J. 828, 26 (2016).

    ADS 

    Google Scholar 

  • Matsuoka, Y. et al. Subaru high-z exploration of low-luminosity quasars (SHELLQs). X. Discovery of 35 quasars and luminous galaxies at 5.7 ≤ z ≤ 7.0. Astrophys. J. 883, 183 (2019).

    ADS 

    Google Scholar 

  • Aihara, H. et al. The Hyper Suprime-Cam SSP Survey: overview and survey design. Publ. Astron. Soc. Jpn 70, S4 (2018).

    Google Scholar 

  • Ding, X. et al. Detection of stellar light from quasar host galaxies at redshifts above 6. Nature 621, 51–55 (2023).

    ADS 

    Google Scholar 

  • Brammer, G. msaexp: NIRSpec analysis tools (0.6.17). Zenodo https://doi.org/10.5281/zenodo.8319596 (2023).

  • Ding, X. et al. The mass relations between supermassive black holes and their host galaxies at 1 < z < 2 HST-WFC3. Astrophys. J. 888, 37 (2020).

    ADS 

    Google Scholar 

  • Birrer, S. et al. Lenstronomy II: a gravitational lensing software ecosystem. J. Open Source Softw. 6, 3283 (2021).

    ADS 

    Google Scholar 

  • Li, J. et al. Synchronized coevolution between supermassive black holes and galaxies over the last seven billion years as revealed by Hyper Suprime-Cam. Astrophys. J. 922, 142 (2021).

    ADS 

    Google Scholar 

  • Tanaka, T. S. et al. The MBHM* relation up to z ~ 2 through decomposition of COSMOS-Web NIRCam images. Astrophys. J. 979, 215 (2025).

    Google Scholar 

  • Ito, K. et al. Size–stellar mass relation and morphology of quiescent galaxies at z ≥ 3 in public JWST fields. Astrophys. J. 964, 192 (2024).

    ADS 

    Google Scholar 

  • Ding, X. et al. SHELLQs-JWST unveils the host galaxies of twelve quasars at z > 6. Preprint at https://arxiv.org/abs/2505.03876 (2025).

  • Fu, Y. QSOFITMORE: a Python package for fitting UV-optical spectra of quasars. Zenodo https://doi.org/10.5281/zenodo.5810042 (2021).

  • Selsing, J., Fynbo, J. P. U., Christensen, L. & Krogager, J.-K. An X-Shooter composite of bright 1 < z < 2 quasars from UV to infrared. Astron. Astrophys. 585, A87 (2016).

    ADS 

    Google Scholar 

  • Goto, T. et al. Hδ-strong galaxies in the Sloan Digital Sky Survey. I. The catalog. Publ. Astron. Soc. Jpn 55, 771–787 (2003).

    ADS 

    Google Scholar 

  • Wu, P.-F. Ejective feedback as a quenching mechanism in the first 1.5 billion years of the Universe: detection of neutral gas outflow in a z = 4 recently quenched galaxy. Astrophys. J. 978, 131 (2025).

    Google Scholar 

  • Curtis-Lake, E. et al. Spectroscopic confirmation of four metal-poor galaxies at z = 10.3–13.2. Nat. Astron. 7, 622–632 (2023).

    ADS 

    Google Scholar 

  • Inayoshi, K. & Maiolino, R. Extremely dense gas around little red dots and high-redshift AGNs: a non-stellar origin of the Balmer break and absorption features. Astrophys. J. Lett. 980, L27 (2025).

    Google Scholar 

  • Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    ADS 

    Google Scholar 

  • Chevallard, J. & Charlot, S. Modelling and interpreting spectral energy distributions of galaxies with BEAGLE. Mon. Not. R. Astron. Soc. 462, 1415–1443 (2016).

    ADS 

    Google Scholar 

  • Falcón-Barroso, J. et al. An updated MILES stellar library and stellar population models. Astron. Astrophys. 532, A95 (2011).

    Google Scholar 

  • Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    ADS 

    Google Scholar 

  • Nakajima, K. et al. JWST census for the mass-metallicity star formation relations at z = 4–10 with self-consistent flux calibration and proper metallicity calibrators. Astrophys. J. Suppl. Ser. 269, 33 (2023).

    ADS 

    Google Scholar 

  • Greene, J. E. & Ho, L. C. Measuring stellar velocity dispersions in active galaxies. Astrophys. J. 641, 117–132 (2006).

    ADS 

    Google Scholar 

  • Cappellari, M. Full spectrum fitting with photometry in PPXF: stellar population versus dynamical masses, non-parametric star formation history and metallicity for 3200 LEGA-C galaxies at redshift z ≈ 0.8. Mon. Not. R. Astron. Soc. 526, 3273–3300 (2023).

    ADS 

    Google Scholar 

  • Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486–506 (2009).

    ADS 

    Google Scholar 

  • Conroy, C. & Gunn, J. E. The propagation of uncertainties in stellar population synthesis modeling. III. Model calibration, comparison, and evaluation. Astrophys. J. 712, 833–857 (2010).

    ADS 

    Google Scholar 

  • Matsuoka, Y. et al. Subaru high-z exploration of low-luminosity quasars (SHELLQs). V. Quasar luminosity function and contribution to cosmic reionization at z = 6. Astrophys. J. 869, 150 (2018).

    ADS 

    Google Scholar 

  • Eracleous, M., Lewis, K. T. & Flohic, H. M. L. G. Double-peaked emission lines as a probe of the broad-line regions of active galactic nuclei. New Astron. Rev. 53, 133–139 (2009).

    ADS 

    Google Scholar 

  • Ward, C. et al. Panic at the ISCO: time-varying double-peaked broad lines from evolving accretion disks are common among optically variable AGNs. Astrophys. J. 961, 172 (2024).

    ADS 

    Google Scholar 

  • Chen, K. & Halpern, J. P. Structure of line-emitting accretion disks in active galactic nuclei: ARP 102B. Astrophys. J. 344, 115 (1989).

    ADS 

    Google Scholar 

  • Luo, B. et al. Discovery of the most distant double-peaked emitter at z = 1.369. Astrophys. J. 695, 1227–1232 (2009).

    ADS 

    Google Scholar 

  • Strateva, I. V. et al. Double-peaked low-ionization emission lines in active galactic nuclei. Astron. J. 126, 1720–1749 (2003).

    ADS 

    Google Scholar 

  • Xu, D. & Komossa, S. Narrow double-peaked emission lines of SDSS J131642.90+175332.5: signature of a single or a binary AGN in a merger, jet-cloud interaction, or unusual narrow-line region geometry. Astrophys. J. Lett. 705, L20–L24 (2009).

    ADS 

    Google Scholar 

  • Smith, K. L. et al. A search for binary active galactic nuclei: double-peaked [O iii] AGNs in the Sloan Digital Sky Survey. Astrophys. J. 716, 866–877 (2010).

    ADS 

    Google Scholar 

  • Übler, H. et al. GA-NIFS: JWST discovers an offset AGN 740 million years after the big bang. Mon. Not. R. Astron. Soc. 531, 355–365 (2024).

    ADS 

    Google Scholar 

  • Bischetti, M. et al. The WISSH quasars project. I. Powerful ionised outflows in hyper-luminous quasars. Astron. Astrophys. 598, A122 (2017).

    Google Scholar 

  • Marshall, M. A. et al. GA-NIFS: black hole and host galaxy properties of two z 6.8 quasars from the NIRSpec IFU. Astron. Astrophys. 678, A191 (2023).

    Google Scholar 

  • Yang, J. et al. A spectroscopic survey of biased halos in the reionization era (ASPIRE): a first look at the rest-frame optical spectra of z > 6.5 quasars using JWST. Astrophys. J. Lett. 951, L5 (2023).

    ADS 

    Google Scholar 

  • Vestergaard, M. & Peterson, B. M. Determining central black hole masses in distant active galaxies and quasars. II. Improved optical and UV scaling relationships. Astrophys. J. 641, 689–709 (2006).

    ADS 

    Google Scholar 

  • Richards, G. T. et al. Spectral energy distributions and multiwavelength selection of type 1 quasars. Astrophys. J. Suppl. Ser. 166, 470–497 (2006).

    ADS 

    Google Scholar 

  • Greene, J. E. & Ho, L. C. Estimating black hole masses in active galaxies using the Hα emission line. Astrophys. J. 630, 122–129 (2005).

    ADS 

    Google Scholar 

  • Salmon, B. et al. The relation between star formation rate and stellar mass for galaxies at 3.5 ≤ z ≤ 6.5 in CANDELS. Astrophys. J. 799, 183 (2015).

    ADS 

    Google Scholar 

  • Izumi, T. et al. Subaru high-z exploration of low-luminosity quasars (SHELLQs). XIII. Large-scale feedback and star formation in a low-luminosity quasar at z = 7.07 on the local black hole to host mass relation. Astrophys. J. 914, 36 (2021).

    ADS 

    Google Scholar 

  • Schreiber, C. et al. Near infrared spectroscopy and star-formation histories of 3 ≤ z ≤ 4 quiescent galaxies. Astron. Astrophys. 618, A85 (2018).

    Google Scholar 

  • Valentino, F. et al. Quiescent galaxies 1.5 billion years after the Big Bang and their progenitors. Astrophys. J. 889, 93 (2020).

    ADS 

    Google Scholar 

  • Forrest, B. et al. The massive ancient galaxies at z > 3 near-infrared (MAGAZ3NE) survey: confirmation of extremely rapid star formation and quenching timescales for massive galaxies in the early Universe. Astrophys. J. 903, 47 (2020).

    ADS 

    Google Scholar 

  • Carnall, A. C. et al. The JWST EXCELS survey: too much, too young, too fast? Ultra-massive quiescent galaxies at 3 < z < 5. Mon. Not. R. Astron. Soc. 534, 325–348 (2024).

    Google Scholar 

  • Nanayakkara, T. et al. A population of faint, old, and massive quiescent galaxies at 3 < z < 4 revealed by JWST NIRSpec Spectroscopy. Sci. Rep. 14, 3724 (2024).

    ADS 

    Google Scholar 

  • Kakimoto, T. et al. A massive quiescent galaxy in a group environment at z = 4.53. Astrophys. J. 963, 49 (2024).

    ADS 

    Google Scholar 

  • Glazebrook, K. et al. A massive galaxy that formed its stars at z ≈ 11. Nature 628, 277–281 (2024).

    ADS 

    Google Scholar 

  • Wang, B. et al. RUBIES: evolved stellar populations with extended formation histories at z ~ 7–8 in candidate massive galaxies identified with JWST/NIRSpec. Astrophys. J. Lett. 969, L13 (2024).

    Google Scholar 

  • Kokorev, V. et al. Silencing the giant: evidence of active galactic nucleus feedback and quenching in a little red dot at z = 4.13. Astrophys. J. 975, 178 (2024).

    Google Scholar 

  • Labbe, I. et al. An unambiguous AGN and a Balmer break in an ultraluminous little red dot at z = 4.47 from ultradeep UNCOVER and all the little things spectroscopy. Preprint at https://arxiv.org/abs/2412.04557 (2024).

  • Stone, M. A., Lyu, J., Rieke, G. H. & Alberts, S. Detection of the low-stellar-mass host galaxy of a z = 6.25 quasar with JWST. Astrophys. J. 953, 180 (2023).

    ADS 

    Google Scholar 

  • Stone, M. A., Lyu, J., Rieke, G. H., Alberts, S. & Hainline, K. N. Undermassive host galaxies of five z ~ 6 luminous quasars detected with JWST. Astrophys. J. 964, 90 (2024).

    ADS 

    Google Scholar 

  • Yue, M. et al. EIGER. V. Characterizing the host galaxies of luminous quasars at z 6. Astrophys. J. 966, 176 (2024).

    ADS 

    Google Scholar 

  • Matsuoka, Y. et al. The Sloan Digital Sky Survey reverberation mapping project: post-starburst signatures in quasar host galaxies at z > 1. Astrophys. J. 811, 91 (2015).

    ADS 

    Google Scholar 

  • Continue Reading