Accurate identification of bovine deltapapillomavirus in equine sarcoids by ddPCR

  • Nasir, L. & Campo, M. S. Bovine papillomaviruses: their role in the aetiology of cutaneous tumour of Bovids and equids. Vet. Dermatol. 19, 243–254. https://doi.org/10.1111/j.1365-3164.2008.00683.x (2008).

    Article 
    PubMed 

    Google Scholar 

  • Knottenbelt, D. C. The equine sarcoid -Why are there so many treatment options. Vet. Clin. North. Am. Equine Pract. 35, 243–262. https://doi.org/10.1016/j.cveq.2019.03.006 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Chambers, G. et al. Association of bovine papillomavirus with the equine sarcoid. J. Gen. Virol. 84, 1055–1062. https://doi.org/10.1099/vir.0.18947-0 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lunardi, M. et al. Genetic characterization of a novel bovine papillomavirus member of the deltapapillomavirus genus. Vet. Microbiol. 162, 207–213. https://doi.org/10.1016/j.vetmic.2012.08.030 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lunardi, M. et al. Bovine papillomavirus type 13 DNA in equine sarcoids. J. Clin. Microbiol. 51, 2167–2171. https://doi.org/10.1128/jcm.00371-13 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roperto, S., Munday, J. S., Corrado, F., Goria, M. & Roperto, F. Detection of bovine papillomavirus type 14 DNA sequences in urinary bladder tumors in cattle. Vet. Microbiol. 190, 1–4. https://doi.org/10.1016/j.vetmic.2016.04.007 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • zur Hausen, H. Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J. Natl. Cancer Inst. 92, 690–698. https://doi.org/10.1093/jnci/92.9.690 (2000).

    Article 
    PubMed 

    Google Scholar 

  • Rector, A. & Van Ranst, M. Animal papillomaviruses. Virology 445, 213–223. https://doi.org/10.1016/j.virol.2013.05.007 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Villiers, E. M., Fauquet, C., Broker, T. R. & Bernard, H. U. Zur hausen, H. Classification of papillomaviruses. Virology 324, 17–27. https://doi.org/10.1016/j.virol.2004.03.033 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carr, E. A., Theon, A. P., Madewell, B. R., Griffey, S. M. & Hitchcock, M. E. Bovine papillomavirus DNA in neoplastic and nonneoplastic tissues obtained from horses with and without sarcoids in the Western united States. Am. J. Vet. Res. 62, 741–744. https://doi.org/10.2460/ajvr.2001.62.741 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wobeser, B. K. et al. Epidemiology of equine sarcoids in horses in Western Canada. Can. Vet. J. 51, 1103–1108 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hainisch, E. K. et al. Bovine papillomavirus type 1 and 2 virion-infected primary fibroblasts constitute a near-natural equine sarcoid model. Viruses 14, 2658. https://doi.org/10.3390/v14122658 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gysens, L., Vanmechelen, B., Haspeslagh, M., Maes, P. & Martens, A. New approach for genomic characterisation of equine sarcoid-derived BPV-1/-2 using nanopore-based sequencing. Virol. J. 19, 8. https://doi.org/10.1186/s12985-021-01735-5 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roperto, S. et al. Bovine papillomavirus type 13 expression in the urothelial bladder tumours of cattle. Transbound. Emerg. Dis. 63, 628–634. https://doi.org/10.1111/tbed.12322 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gasparotto, G. et al. Characterization of bovine papillomavirus types detected in cattle rumen tissues from Amazon region, Brazil. Animals 14, 2262. https://doi.org/10.3390/ani14152262 (2024).

    Article 

    Google Scholar 

  • Jindra, C., Kamjunke, A. K., Jones, S. & Brandt, S. Screening for bovine papillomavirus type 13 (BPV13) in a European population of sarcoid-bearing equids. Equine Vet. J. 54, 662–669. https://doi.org/10.1111/evj.13501 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Munday, J. S., Knight, C. G. & Howe, L. The same papillomavirus is present in feline sarcoids from North America and new Zealand but not in any non-sarcoid feline samples. J. Vet. Diagn. Invest. 22, 97–100. https://doi.org/10.1177/104063871002200119 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Orbell, G. M., Young, S. & Munday, J. S. Cutaneous sarcoids in captive African lions associated with feline sarcoid-associated papillomavirus infection. Vet. Pathol. 48, 1176–1179. https://doi.org/10.1177/0300985810391111 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Munday, J. S. et al. Genomic characterisation of the feline sarcoid-associated papillomavirus and proposed classification as Bos Taurus papillomavirus type 14. Vet. Microbiol. 177, 289–295. https://doi.org/10.1016/j.vetmic.2015.03.019 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Munday, J. S. & Knight, C. G. Amplification of feline sarcoid-associated papillomavirus DNA sequences from bovine skin. Vet. Dermatol. 21, 341–344. https://doi.org/10.1111/j.1365-3164.2010.00872.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • Kojabad, A. A. et al. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J. Med. Virol. 93, 4182–4197. https://doi.org/10.1002/jmv.26846 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. Application of droplet digital PCR to detect the pathogens of infectious diseases. Biosci. Rep. 38, BSR20181170. https://doi.org/10.1042/BSR20181170 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Biron, V. L. et al. Detection of human papillomavirus type16 in oropharyngeal squamous cell carcinoma using droplet digital polymerase chain reaction. Cancer 122, 1544–1551. https://doi.org/10.1002/cncr.29976 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Isaac, A. et al. Ultrasensitive detection of oncogenic human papillomavirus in oropharyngeal tissue swabs. J. Otolaryngol. Head Neck Surg. 46, 5. https://doi.org/10.1186/s40463-016-0177-8 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lillsunde Larsson, G. & Helenius, G. Digital droplet PCR (ddPCR) for the detection and quantification of HPV 16, 18, 33 and 45 – a short report. Cell. Oncol. 40, 521–527. https://doi.org/10.1007/s13402-017-0331-y (2017).

    Article 
    CAS 

    Google Scholar 

  • De Falco, F., Corrado, F., Cutarelli, A., Leonardi, L. & Roperto, S. Digital droplet for detection and quantification of Circulating bovine deltapapillomavirus. Transbound. Emerg. Dis. 68, 1345–1352. https://doi.org/10.1111/tbed.13795 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • De Falco, F. et al. Molecular epidemiology of ovine papillomavirus infection in Southern Italy. Front. Vet. Sci. 8, 7903922. https://doi.org/10.3389/fvets.2021.790392 (2021).

    Article 

    Google Scholar 

  • Cutarelli, A. et al. Prevalence and genotype distribution of caprine papillomavirus in peripheral blood of healthy goats in farms from three European countries. Front. Vet. Sci. 10, 1213150. https://doi.org/10.3389/fvets.2023.1213150 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brandt, S. et al. BPV-1 infection is not confined to the dermis but also involves the epidermis of equine sarcoids. Vet. Microbiol. 150, 35–40. https://doi.org/10.1016/j.vetmic.2010.12.021 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hainisch, E. K. & Brandt, S. Equine Sarcoids. In: Robinson’s Current Therapy in Equine Medicine, (eds. Robinson, N.E. & Sprayberry, K.A.) Vol.1Saunders Elsevier. St Louis, MO, USA,. (2015).

  • De Falco, F., Cutarelli, A., Fedele, M. L., Catoi, C. & Roperto, S. Molecular findings and virological assessment of bladder papillomavirus infection in cattle. Vet. Q. 44, 1–7. https://doi.org/10.1080/01652176.2024.2387072 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roperto, S., Cutarelli, A., Corrado, F., De Falco, F. & Buonavoglia, C. Detection and quantification of bovine papillomavirus DNA by digital droplet PCR in sheep blood. Sci. Rep. 11, 10292. https://doi.org/10.1038/s41598-021-89782-4 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cutarelli, A., De Falco, F., Uleri, V., Buonavoglia, C. & Roperto, S. The diagnostic value of the droplet digital PCR for the detection of bovine deltapapillomavirus in goats by liquid biopsy. Transbound. Emerg. Dis. 68, 3624–3630. https://doi.org/10.1111/tbed.13971 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cutarelli, A. et al. Ultrasensitive detection and quantification of bovine deltapapillomavirus in the semen of healthy horses. Sci. Rep. 15, 769. https://doi.org/10.1038/s41598-024-81682-7 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Falco, F., Cutarelli, A., Pellicanò, R., Brandt, S. & Roperto, S. Molecular detection and quantification of ovine papillomavirus DNA in equine sarcoid. Transbound. Emerg. Dis. 2024 (6453158). https://doi.org/10.1155/2024/6453158 (2024).

  • Cutarelli, A. et al. Molecular detection of transcriptionally active ovine papillomaviruses in commercial equine semen. Front. Vet. Sci. 11, 1427370. https://doi.org/10.3389/fvets.2024.1427370 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hindson, B. J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610. https://doi.org/10.1021/ac202028g (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Daudt, C. et al. How many papillomavirus species can go undetected in papilloma lesions. Sci. Rep. 6, 36480. https://doi.org/10.1038/srep36480 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sauthier, J. T. The genetic diversity of papillomavirome in bovine teat papilloma lesions. Anim. Microbiome. 3, 51. https://doi.org/10.1186/s42523-021-00114-3 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • dos Souza, A. Characterization of papillomatous lesions and genetic diversity of bovine papillomavirus from the Amazon region. Viruses 17, 719. https://doi.org/10.3390/v17050719 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chaturvedi, A. K. et al. Human papillomavirus infection with multiple types: pattern of coinfection and risk of cervical disease. J. Infect. Dis. 203, 910–920. https://doi.org/10.1093/infdis/jiq139 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akinjyi, I. et al. HPV infection patterns and viral load distribution: implication on cervical cancer prevention in Western Kenia. Eur. J. Cancer Prev. 34, 329–336. https://doi.org/10.1097/CEJ.0000000000000920 (2025).

    Article 
    CAS 

    Google Scholar 

  • Guo, W. et al. Epidemiological study of human papillomavirus infection in 105,679 women in wuhan, China. BMC Infect. Dis. 24, 1111. https://doi.org/10.1186/s12879-024-10011-0 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herrero, R. et al. Population-based study of human papillomavirus infection and cervical neoplasia in rural Costa Rica. J. Natl. Cancer Inst. 9, 464–474. https://doi.org/10.1093/jnci.92.6.464 (2020).

    Article 

    Google Scholar 

  • Luo, Q. et al. Epidemiologic characteristics of high-risk HPV and the correlation between multiple infections and cervical lesions. BMC Infect. Dis. 23, 667. https://doi.org/10.1186/s12879-023-08634-w (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Capparelli, R. et al. Mannose-binding lectin haplotypes influence Brucella abortus infection in the water Buffalo (Bubalus bubalis). Immunogenetics 60, 157–165. https://doi.org/10.1007/s00251-008-0284-4 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • De Falco, F. et al. Bovine delta papillomavirus E5 oncoprotein interacts with TRIM25 and hampers antiviral innate immune response mediated by RIG-I-like receptors. Front. Immunol. 10, 658762. https://doi.org/10.3389/fimmu.2021.658762 (2021).

    Article 
    CAS 

    Google Scholar 

  • De Falco, F. et al. Bovine delta papillomavirus E5 oncoprotein negatively regulates the cGAS-STING signaling pathway in cattle in a spontaneous model of viral disease. Front. Immunol. 13, 937736. https://doi.org/10.3389/fimmu.2022.937736 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brandt, S., Haralambus, R., Schoster, A., Kirnbauer, R. & Stanek, C. Peripheral blood mononuclear cells represent a reservoir of bovine papillomavirus DNA in sarcoid-affected equines. J. Gen. Virol. 89, 1390–1395. https://doi.org/10.1099/vir.0.83568-0 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brandt, S. et al. A subset of equine sarcoids harbours BPV-1 DNA in a complex with L1 major capsid protein. Virology 375, 433–441. https://doi.org/10.1016/j.virol.2008.02.014 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • De Falco, F. et al. Possible etiological association of ovine papillomaviruses with bladder tumors in cattle. Virus Res. 328, 199084. https://doi.org/10.1016/j.virusres.2023.199084 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading