Nasir, L. & Campo, M. S. Bovine papillomaviruses: their role in the aetiology of cutaneous tumour of Bovids and equids. Vet. Dermatol. 19, 243–254. https://doi.org/10.1111/j.1365-3164.2008.00683.x (2008).
Google Scholar
Knottenbelt, D. C. The equine sarcoid -Why are there so many treatment options. Vet. Clin. North. Am. Equine Pract. 35, 243–262. https://doi.org/10.1016/j.cveq.2019.03.006 (2019).
Google Scholar
Chambers, G. et al. Association of bovine papillomavirus with the equine sarcoid. J. Gen. Virol. 84, 1055–1062. https://doi.org/10.1099/vir.0.18947-0 (2003).
Google Scholar
Lunardi, M. et al. Genetic characterization of a novel bovine papillomavirus member of the deltapapillomavirus genus. Vet. Microbiol. 162, 207–213. https://doi.org/10.1016/j.vetmic.2012.08.030 (2013).
Google Scholar
Lunardi, M. et al. Bovine papillomavirus type 13 DNA in equine sarcoids. J. Clin. Microbiol. 51, 2167–2171. https://doi.org/10.1128/jcm.00371-13 (2013).
Google Scholar
Roperto, S., Munday, J. S., Corrado, F., Goria, M. & Roperto, F. Detection of bovine papillomavirus type 14 DNA sequences in urinary bladder tumors in cattle. Vet. Microbiol. 190, 1–4. https://doi.org/10.1016/j.vetmic.2016.04.007 (2016).
Google Scholar
zur Hausen, H. Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J. Natl. Cancer Inst. 92, 690–698. https://doi.org/10.1093/jnci/92.9.690 (2000).
Google Scholar
Rector, A. & Van Ranst, M. Animal papillomaviruses. Virology 445, 213–223. https://doi.org/10.1016/j.virol.2013.05.007 (2013).
Google Scholar
de Villiers, E. M., Fauquet, C., Broker, T. R. & Bernard, H. U. Zur hausen, H. Classification of papillomaviruses. Virology 324, 17–27. https://doi.org/10.1016/j.virol.2004.03.033 (2004).
Google Scholar
Carr, E. A., Theon, A. P., Madewell, B. R., Griffey, S. M. & Hitchcock, M. E. Bovine papillomavirus DNA in neoplastic and nonneoplastic tissues obtained from horses with and without sarcoids in the Western united States. Am. J. Vet. Res. 62, 741–744. https://doi.org/10.2460/ajvr.2001.62.741 (2001).
Google Scholar
Wobeser, B. K. et al. Epidemiology of equine sarcoids in horses in Western Canada. Can. Vet. J. 51, 1103–1108 (2010).
Google Scholar
Hainisch, E. K. et al. Bovine papillomavirus type 1 and 2 virion-infected primary fibroblasts constitute a near-natural equine sarcoid model. Viruses 14, 2658. https://doi.org/10.3390/v14122658 (2022).
Google Scholar
Gysens, L., Vanmechelen, B., Haspeslagh, M., Maes, P. & Martens, A. New approach for genomic characterisation of equine sarcoid-derived BPV-1/-2 using nanopore-based sequencing. Virol. J. 19, 8. https://doi.org/10.1186/s12985-021-01735-5 (2022).
Google Scholar
Roperto, S. et al. Bovine papillomavirus type 13 expression in the urothelial bladder tumours of cattle. Transbound. Emerg. Dis. 63, 628–634. https://doi.org/10.1111/tbed.12322 (2016).
Google Scholar
Gasparotto, G. et al. Characterization of bovine papillomavirus types detected in cattle rumen tissues from Amazon region, Brazil. Animals 14, 2262. https://doi.org/10.3390/ani14152262 (2024).
Google Scholar
Jindra, C., Kamjunke, A. K., Jones, S. & Brandt, S. Screening for bovine papillomavirus type 13 (BPV13) in a European population of sarcoid-bearing equids. Equine Vet. J. 54, 662–669. https://doi.org/10.1111/evj.13501 (2021).
Google Scholar
Munday, J. S., Knight, C. G. & Howe, L. The same papillomavirus is present in feline sarcoids from North America and new Zealand but not in any non-sarcoid feline samples. J. Vet. Diagn. Invest. 22, 97–100. https://doi.org/10.1177/104063871002200119 (2010).
Google Scholar
Orbell, G. M., Young, S. & Munday, J. S. Cutaneous sarcoids in captive African lions associated with feline sarcoid-associated papillomavirus infection. Vet. Pathol. 48, 1176–1179. https://doi.org/10.1177/0300985810391111 (2011).
Google Scholar
Munday, J. S. et al. Genomic characterisation of the feline sarcoid-associated papillomavirus and proposed classification as Bos Taurus papillomavirus type 14. Vet. Microbiol. 177, 289–295. https://doi.org/10.1016/j.vetmic.2015.03.019 (2015).
Google Scholar
Munday, J. S. & Knight, C. G. Amplification of feline sarcoid-associated papillomavirus DNA sequences from bovine skin. Vet. Dermatol. 21, 341–344. https://doi.org/10.1111/j.1365-3164.2010.00872.x (2010).
Google Scholar
Kojabad, A. A. et al. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J. Med. Virol. 93, 4182–4197. https://doi.org/10.1002/jmv.26846 (2021).
Google Scholar
Li, H. et al. Application of droplet digital PCR to detect the pathogens of infectious diseases. Biosci. Rep. 38, BSR20181170. https://doi.org/10.1042/BSR20181170 (2018).
Google Scholar
Biron, V. L. et al. Detection of human papillomavirus type16 in oropharyngeal squamous cell carcinoma using droplet digital polymerase chain reaction. Cancer 122, 1544–1551. https://doi.org/10.1002/cncr.29976 (2016).
Google Scholar
Isaac, A. et al. Ultrasensitive detection of oncogenic human papillomavirus in oropharyngeal tissue swabs. J. Otolaryngol. Head Neck Surg. 46, 5. https://doi.org/10.1186/s40463-016-0177-8 (2017).
Google Scholar
Lillsunde Larsson, G. & Helenius, G. Digital droplet PCR (ddPCR) for the detection and quantification of HPV 16, 18, 33 and 45 – a short report. Cell. Oncol. 40, 521–527. https://doi.org/10.1007/s13402-017-0331-y (2017).
Google Scholar
De Falco, F., Corrado, F., Cutarelli, A., Leonardi, L. & Roperto, S. Digital droplet for detection and quantification of Circulating bovine deltapapillomavirus. Transbound. Emerg. Dis. 68, 1345–1352. https://doi.org/10.1111/tbed.13795 (2021).
Google Scholar
De Falco, F. et al. Molecular epidemiology of ovine papillomavirus infection in Southern Italy. Front. Vet. Sci. 8, 7903922. https://doi.org/10.3389/fvets.2021.790392 (2021).
Google Scholar
Cutarelli, A. et al. Prevalence and genotype distribution of caprine papillomavirus in peripheral blood of healthy goats in farms from three European countries. Front. Vet. Sci. 10, 1213150. https://doi.org/10.3389/fvets.2023.1213150 (2023).
Google Scholar
Brandt, S. et al. BPV-1 infection is not confined to the dermis but also involves the epidermis of equine sarcoids. Vet. Microbiol. 150, 35–40. https://doi.org/10.1016/j.vetmic.2010.12.021 (2011).
Google Scholar
Hainisch, E. K. & Brandt, S. Equine Sarcoids. In: Robinson’s Current Therapy in Equine Medicine, (eds. Robinson, N.E. & Sprayberry, K.A.) Vol.1Saunders Elsevier. St Louis, MO, USA,. (2015).
De Falco, F., Cutarelli, A., Fedele, M. L., Catoi, C. & Roperto, S. Molecular findings and virological assessment of bladder papillomavirus infection in cattle. Vet. Q. 44, 1–7. https://doi.org/10.1080/01652176.2024.2387072 (2024).
Google Scholar
Roperto, S., Cutarelli, A., Corrado, F., De Falco, F. & Buonavoglia, C. Detection and quantification of bovine papillomavirus DNA by digital droplet PCR in sheep blood. Sci. Rep. 11, 10292. https://doi.org/10.1038/s41598-021-89782-4 (2021).
Google Scholar
Cutarelli, A., De Falco, F., Uleri, V., Buonavoglia, C. & Roperto, S. The diagnostic value of the droplet digital PCR for the detection of bovine deltapapillomavirus in goats by liquid biopsy. Transbound. Emerg. Dis. 68, 3624–3630. https://doi.org/10.1111/tbed.13971 (2021).
Google Scholar
Cutarelli, A. et al. Ultrasensitive detection and quantification of bovine deltapapillomavirus in the semen of healthy horses. Sci. Rep. 15, 769. https://doi.org/10.1038/s41598-024-81682-7 (2025).
Google Scholar
De Falco, F., Cutarelli, A., Pellicanò, R., Brandt, S. & Roperto, S. Molecular detection and quantification of ovine papillomavirus DNA in equine sarcoid. Transbound. Emerg. Dis. 2024 (6453158). https://doi.org/10.1155/2024/6453158 (2024).
Cutarelli, A. et al. Molecular detection of transcriptionally active ovine papillomaviruses in commercial equine semen. Front. Vet. Sci. 11, 1427370. https://doi.org/10.3389/fvets.2024.1427370 (2024).
Google Scholar
Hindson, B. J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610. https://doi.org/10.1021/ac202028g (2011).
Google Scholar
Daudt, C. et al. How many papillomavirus species can go undetected in papilloma lesions. Sci. Rep. 6, 36480. https://doi.org/10.1038/srep36480 (2017).
Google Scholar
Sauthier, J. T. The genetic diversity of papillomavirome in bovine teat papilloma lesions. Anim. Microbiome. 3, 51. https://doi.org/10.1186/s42523-021-00114-3 (2021).
Google Scholar
dos Souza, A. Characterization of papillomatous lesions and genetic diversity of bovine papillomavirus from the Amazon region. Viruses 17, 719. https://doi.org/10.3390/v17050719 (2025).
Google Scholar
Chaturvedi, A. K. et al. Human papillomavirus infection with multiple types: pattern of coinfection and risk of cervical disease. J. Infect. Dis. 203, 910–920. https://doi.org/10.1093/infdis/jiq139 (2011).
Google Scholar
Akinjyi, I. et al. HPV infection patterns and viral load distribution: implication on cervical cancer prevention in Western Kenia. Eur. J. Cancer Prev. 34, 329–336. https://doi.org/10.1097/CEJ.0000000000000920 (2025).
Google Scholar
Guo, W. et al. Epidemiological study of human papillomavirus infection in 105,679 women in wuhan, China. BMC Infect. Dis. 24, 1111. https://doi.org/10.1186/s12879-024-10011-0 (2024).
Google Scholar
Herrero, R. et al. Population-based study of human papillomavirus infection and cervical neoplasia in rural Costa Rica. J. Natl. Cancer Inst. 9, 464–474. https://doi.org/10.1093/jnci.92.6.464 (2020).
Google Scholar
Luo, Q. et al. Epidemiologic characteristics of high-risk HPV and the correlation between multiple infections and cervical lesions. BMC Infect. Dis. 23, 667. https://doi.org/10.1186/s12879-023-08634-w (2023).
Google Scholar
Capparelli, R. et al. Mannose-binding lectin haplotypes influence Brucella abortus infection in the water Buffalo (Bubalus bubalis). Immunogenetics 60, 157–165. https://doi.org/10.1007/s00251-008-0284-4 (2008).
Google Scholar
De Falco, F. et al. Bovine delta papillomavirus E5 oncoprotein interacts with TRIM25 and hampers antiviral innate immune response mediated by RIG-I-like receptors. Front. Immunol. 10, 658762. https://doi.org/10.3389/fimmu.2021.658762 (2021).
Google Scholar
De Falco, F. et al. Bovine delta papillomavirus E5 oncoprotein negatively regulates the cGAS-STING signaling pathway in cattle in a spontaneous model of viral disease. Front. Immunol. 13, 937736. https://doi.org/10.3389/fimmu.2022.937736 (2022).
Google Scholar
Brandt, S., Haralambus, R., Schoster, A., Kirnbauer, R. & Stanek, C. Peripheral blood mononuclear cells represent a reservoir of bovine papillomavirus DNA in sarcoid-affected equines. J. Gen. Virol. 89, 1390–1395. https://doi.org/10.1099/vir.0.83568-0 (2008).
Google Scholar
Brandt, S. et al. A subset of equine sarcoids harbours BPV-1 DNA in a complex with L1 major capsid protein. Virology 375, 433–441. https://doi.org/10.1016/j.virol.2008.02.014 (2008).
Google Scholar
De Falco, F. et al. Possible etiological association of ovine papillomaviruses with bladder tumors in cattle. Virus Res. 328, 199084. https://doi.org/10.1016/j.virusres.2023.199084 (2023).
Google Scholar