Ren, X. et al. Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustain. Energy Fuels 4, 15–30. https://doi.org/10.1039/c9se00460b (2019).
Google Scholar
Huang, L. et al. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells. Acc. Chem. Res. 54, 311–322. https://doi.org/10.1021/acs.accounts.0c00488 (2021).
Google Scholar
Huff, C., Biehler, E., Quach, Q., Long, J. M. & Abdel-Fattah, T. M. Synthesis of highly dispersive platinum nanoparticles and their application in a hydrogen generation reaction. Colloids Surf. A Physicochem. Eng. Asp. https://doi.org/10.1016/j.colsurfa.2020.125734 (2021).
Google Scholar
Ataee-Esfahani, H., Wang, L., Nemoto, Y. & Yamauchi, Y. Synthesis of bimetallic Au@Pt nanoparticles with Au core and nanostructured Pt shell toward highly active electrocatalysts. Chem. Mater. 22, 6310–6318. https://doi.org/10.1021/cm102074w (2010).
Google Scholar
Wang, L., Hasanzadeh Kafshgari, M. & Meunier, M. Optical properties and applications of plasmonic-metal nanoparticles. Adv. Funct. Mater. 2005400, 1–28. https://doi.org/10.1002/adfm.202005400 (2020).
Google Scholar
Leary, R. K. et al. Structural and optical properties of discrete dendritic Pt nanoparticles on colloidal Au nanoprisms. J. Phys. Chem. C 120, 20843–20851. https://doi.org/10.1021/acs.jpcc.6b02103 (2016).
Google Scholar
Sun, H. et al. Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer. Adv. Funct. Mater. https://doi.org/10.1002/adfm.201604300 (2017).
Google Scholar
Feng, Y. et al. Electron compensation effect suppressed silver ion release and contributed safety of Au@Ag core–shell nanoparticles. Nano Lett. 19, 4478–4489. https://doi.org/10.1021/acs.nanolett.9b01293 (2019).
Google Scholar
Wang, Y. & Xianyu, Y. Tuning the plasmonic and catalytic signals of Au@Pt nanoparticles for dual-mode biosensing. Biosens. Bioelectron https://doi.org/10.1016/j.bios.2023.115553 (2023).
Google Scholar
Yang, S. et al. Au-Pt nanoparticle formulation as a radiosensitizer for radiotherapy with dual effects. Int. J. Nanomed. 16, 239–248. https://doi.org/10.2147/IJN.S287523 (2021).
Google Scholar
Sarma, P. J., Gardner, C. L., Chugh, S., Sharma, A. & Kjeang, E. Strategic implementation of pulsed oxidation for mitigation of CO poisoning in polymer electrolyte fuel cells. J. Power Sources https://doi.org/10.1016/j.jpowsour.2020.228352 (2020).
Google Scholar
Tian, N., Zhou, Z.-Y., Sun, S.-G., Ding, Y. & Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316(2007), 732–735. https://doi.org/10.1126/science.1140484 (1979).
Google Scholar
Mahmoud, M. A., Tabor, C. E., El-Sayed, M. A., Ding, Y. & Zhong, L. W. A new catalytically active colloidal platinum nanocatalyst: The multiarmed nanostar single crystal. J. Am. Chem. Soc. 130, 4590–4591. https://doi.org/10.1021/ja710646t (2008).
Google Scholar
Chen, J., Herricks, T. & Xia, Y. Polyol synthesis of platinum nanostructures: Control of morphology through the manipulation of reduction kinetics. Angew. Chem. Int. Edition 44, 2589–2592. https://doi.org/10.1002/anie.200462668 (2005).
Google Scholar
Lim, B. et al. Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Lett. 8, 4043–4047. https://doi.org/10.1021/nl802959b (2008).
Google Scholar
Teng, X., Liang, X., Maksimuk, S. & Yang, H. Synthesis of porous platinum nanoparticles. Small 2, 249–253. https://doi.org/10.1002/smll.200500244 (2006).
Google Scholar
Schmidt, T. J., Gasteiger, H. A. & Behm, R. J. Rotating disk electrode measurements on the CO tolerance of a high-surface area Pt/Vulcan carbon fuel cell catalyst. J. Electrochem. Soc. 146, 1296. https://doi.org/10.1149/1.1391761 (1999).
Google Scholar
Liu, M., Lu, Y. & Chen, W. PdAg nanorings supported on graphene nanosheets: Highly methanol-tolerant cathode electrocatalyst for alkaline fuel cells. Adv. Funct. Mater. 23, 1289–1296. https://doi.org/10.1002/adfm.201202225 (2013).
Google Scholar
Wang, D. & Li, Y. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 23, 1044–1060. https://doi.org/10.1002/adma.201003695 (2011).
Google Scholar
Gawande, M. B. et al. Core–shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 44, 7540–7590. https://doi.org/10.1039/c5cs00343a (2015).
Google Scholar
Liu, H. L., Nosheen, F. & Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 44, 3056–3078. https://doi.org/10.1039/c4cs00478g (2015).
Google Scholar
Stephens, I. E. L., Bondarenko, A. S., Grønbjerg, U., Rossmeisl, J. & Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 5, 6744–6762. https://doi.org/10.1039/c2ee03590a (2012).
Google Scholar
Mazumder, V., Chi, M., More, K. L. & Sun, S. Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 132, 7848–7849. https://doi.org/10.1021/ja1024436 (2010).
Google Scholar
Guo, S., Zhang, S., Su, D. & Sun, S. Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their electrocatalysis for oxygen reduction reaction. J. Am. Chem. Soc. 135, 13879–13884. https://doi.org/10.1021/ja406091p (2013).
Google Scholar
Sun, X. et al. Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions. J. Am. Chem. Soc. 136, 5745–5749. https://doi.org/10.1021/ja500590n (2014).
Google Scholar
Zhu, M., Nguyen, M. T., Chau, Y. T. R., Deng, L. & Yonezawa, T. Pt/Ag solid solution alloy nanoparticles in miscibility gaps synthesized by cosputtering onto liquid polymers. Langmuir 37, 6096–6105. https://doi.org/10.1021/acs.langmuir.1c00916 (2021).
Google Scholar
He, L. L. et al. Facile synthesis of platinum-gold alloyed string-bead nanochain networks with the assistance of allantoin and their enhanced electrocatalytic performance for oxygen reduction and methanol oxidation reactions. J. Power Sources 276, 357–364. https://doi.org/10.1016/j.jpowsour.2014.11.119 (2015).
Google Scholar
Mourdikoudis, S. et al. Governing the morphology of Pt-Au heteronanocrystals with improved electrocatalytic performance. Nanoscale 7, 8739–8747. https://doi.org/10.1039/c4nr07481e (2015).
Google Scholar
Kim, Y. et al. Synthesis of AuPt heteronanostructures with enhanced electrocatalytic activity toward oxygen reduction. Angew. Chem. 122, 10395–10399. https://doi.org/10.1002/ange.201005839 (2010).
Google Scholar
Luo, J. et al. Core/shell nanoparticles as electrocatalysts for fuel cell reactions. Adv. Mater. 20, 4342–4347. https://doi.org/10.1002/adma.200703009 (2008).
Google Scholar
Wang, D. et al. Structurally ordered intermetallic platinum–cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87. https://doi.org/10.1038/nmat3458 (2013).
Google Scholar
Luo, J. et al. Phase properties of carbon-supported gold-platinum nanoparticles with different bimetallic compositions. Chem. Mater. 17, 3086–3091. https://doi.org/10.1021/cm050052t (2005).
Google Scholar
Ahmadi, M., Behafarid, F., Cui, C., Strasser, P. & Cuenya, B. R. Long-range segregation phenomena in shape-selected bimetallic nanoparticles: Chemical state effects. ACS Nano 7, 9195–9204. https://doi.org/10.1021/nn403793a (2013).
Google Scholar
Liao, H., Fisher, A. & Xu, Z. J. Surface segregation in bimetallic nanoparticles: A critical issue in electrocatalyst engineering. Small 11, 3221–3246. https://doi.org/10.1002/smll.201403380 (2015).
Google Scholar
Lapp, A. S. et al. Experimental and theoretical structural investigation of AuPt nanoparticles synthesized using a direct electrochemical method. J. Am. Chem. Soc. 140, 6249–6259. https://doi.org/10.1021/jacs.7b12306 (2018).
Google Scholar
Cui, C., Gan, L., Heggen, M., Rudi, S. & Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12, 765–771. https://doi.org/10.1038/nmat3668 (2013).
Google Scholar
Oezaslan, M., Heggen, M. & Strasser, P. Size-dependent morphology of dealloyed bimetallic catalysts: Linking the nano to the macro scale. J. Am. Chem. Soc. 134, 514–524. https://doi.org/10.1021/ja2088162 (2012).
Google Scholar
Thi Ngoc Anh, D., Singh, P., Shankar, C., Mott, D. & Maenosono, S. Charge-transfer-induced suppression of galvanic replacement and synthesis of (Au@Ag)@Au double shell nanoparticles for highly uniform, robust and sensitive bioprobes. Appl. Phys. Lett. 99, 1–4. https://doi.org/10.1063/1.3626031 (2011).
Google Scholar
Chapagain, P. et al. Tuning the surface plasmon resonance of gold dumbbell nanorods. ACS Omega 6, 6871–6880. https://doi.org/10.1021/acsomega.0c06062 (2021).
Google Scholar
Kartashova, A. D. et al. Surface-enhanced Raman scattering-active gold-decorated silicon nanowire substrates for label-free detection of bilirubin. ACS Biomater. Sci. Eng. 8, 4175–4184. https://doi.org/10.1021/acsbiomaterials.1c00728 (2022).
Google Scholar
Liu, H. et al. Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning. Sci. Rep. https://doi.org/10.1038/srep03969 (2014).
Google Scholar
Sharma, V., Sinha, N., Dutt, S., Chawla, M. & Siril, P. F. Tuning the surface enhanced Raman scattering and catalytic activities of gold nanorods by controlled coating of platinum. J. Colloid Interface Sci. 463, 180–187. https://doi.org/10.1016/j.jcis.2015.10.036 (2016).
Google Scholar
Fan, F. R. et al. Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. J. Am. Chem. Soc. 130, 6949–6951. https://doi.org/10.1021/ja801566d (2008).
Google Scholar
Lim, B. et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324(2009), 1302–1305. https://doi.org/10.1126/science.1170377 (1979).
Google Scholar
Lee, Y. W., Kim, M., Kim, Z. H. & Han, S. W. One-step synthesis of Au@Pd core-shell nanooctahedron. J. Am. Chem. Soc. 131, 17036–17037. https://doi.org/10.1021/ja905603p (2009).
Google Scholar
Huang, X. et al. One-step room-temperature synthesis of Au@Pd core–shell nanoparticles with tunable structure using plant tannin as reductant and stabilizer. Green Chem. 13, 950–957. https://doi.org/10.1039/c0gc00724b (2011).
Google Scholar
Wang, L. & Yamauchi, Y. Block copolymer mediated synthesis of dendritic platinum nanoparticles. J. Am. Chem. Soc. 131, 9152–9153. https://doi.org/10.1021/ja902485x (2009).
Google Scholar
Ataee-Esfahani, H., Wang, L. & Yamauchi, Y. Block copolymer assisted synthesis of bimetallic colloids with Au core and nanodendritic Pt shell. Chem. Commun. 46, 3684–3686. https://doi.org/10.1039/c001516d (2010).
Google Scholar
Sumitomo, S., Koizumi, H., Uddin, M. A. & Kato, Y. Comparison of dispersion behavior of agglomerated particles in liquid between ultrasonic irradiation and mechanical stirring. Ultrason. Sonochem. 40, 822–831. https://doi.org/10.1016/j.ultsonch.2017.08.023 (2018).
Google Scholar
Hansen, H. E., Seland, F., Sunde, S., Burheim, O. S. & Pollet, B. G. Frequency controlled agglomeration of pt-nanoparticles in sonochemical synthesis. Ultrason. Sonochem. https://doi.org/10.1016/j.ultsonch.2022.105991 (2022).
Google Scholar
Ramli, N. H. et al. Platinum-based nanoparticles: A review of synthesis methods, surface functionalization, and their applications. Microchem. J. https://doi.org/10.1016/j.microc.2024.110280 (2024).
Google Scholar
Takeuchi, Y. et al. Formation of multishell Au@Ag@Pt nanoparticles by coreduction method: A microscopic study. Mater. Today Chem. 21, 100515. https://doi.org/10.1016/J.MTCHEM.2021.100515 (2021).
Google Scholar
Lee, H. J. et al. Controlling the composition and nanostructure of Au@Ag–Pt core@multi-shell nanoparticles prepared by co-reduction method. Mater. Today Chem. https://doi.org/10.1016/j.mtchem.2024.102132 (2024).
Google Scholar
Personick, M. L. & Mirkin, C. A. Making sense of the mayhem behind shape control in the synthesis of gold nanoparticles. J. Am. Chem. Soc. 135, 18238–18247. https://doi.org/10.1021/ja408645b (2013).
Google Scholar
Frank, F. C. The influence of dislocations on crystal growth. Discuss Faraday Soc. 5, 48–54. https://doi.org/10.1039/DF9490500048 (1949).
Google Scholar
Levi, A. C. & Kotrla, M. Theory and simulation of crystal growth. J. Phys. Condens. Matter 9, 299. https://doi.org/10.1088/0953-8984/9/2/001 (1997).
Google Scholar
Volmer, M. & Schultze, W. Kondensation an Kristallen. Z. Phys. Chem. 156A, 1–22. https://doi.org/10.1515/zpch-1931-15602 (1931).
Google Scholar
Lim, B., Jiang, M., Yu, T., Camargo, P. H. C. & Xia, Y. Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Res. 3, 69–80. https://doi.org/10.1007/s12274-010-1010-8 (2010).
Google Scholar
Xu, J. et al. Synthesis and catalytic properties of Au-Pd nanoflowers. ACS Nano 5, 6119–6127. https://doi.org/10.1021/nn201161m (2011).
Google Scholar
Jungjohann, K. L., Bliznakov, S., Sutter, P. W., Stach, E. A. & Sutter, E. A. In situ liquid cell electron microscopy of the solution growth of Au-Pd core-shell nanostructures. Nano Lett. 13, 2964–2970. https://doi.org/10.1021/nl4014277 (2013).
Google Scholar
Li, Z. et al. Sonochemical catalysis as a unique strategy for the fabrication of nano-/micro-structured inorganics. Nanoscale Adv. 3, 41–72. https://doi.org/10.1039/d0na00753f (2021).
Google Scholar
Shim, K. et al. Rationally designed bimetallic Au@Pt nanoparticles for glucose oxidation. Sci. Rep. https://doi.org/10.1038/s41598-018-36759-5 (2019).
Google Scholar