Task-based functional connectivity in infants after exposure to regular white noise during natural sleep measured by fNIRS

  • Shine, J. M., Lewis, L. D., Garrett, D. D. & Hwang, K. The impact of the human thalamus on brain-wide information processing. Nat. Rev. Neurosci. 24 (7), 416–430. https://doi.org/10.1038/s41583-023-00701-0 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sundermann, B. & Pfleiderer, B. Functional connectivity profile of the human inferior frontal junction: Involvement in a cognitive control network. BMC Neurosci. 13, 119. https://doi.org/10.1186/1471-2202-13-119 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singer, W. Recurrent dynamics in the cerebral cortex: Integration of sensory evidence with stored knowledge. Proc. Natl. Acad. Sci. U.S.A. 118 (33), e2101043118. https://doi.org/10.1073/pnas.2101043118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gogolla, N. The insular cortex. Curr. Biology: CB. 27 (12), R580–R586. https://doi.org/10.1016/j.cub.2017.05.010 (2017).

    Article 
    CAS 

    Google Scholar 

  • Klingler, E. Development and organization of the evolutionarily conserved Three-Layered olfactory cortex. eNeuro 4 (1). https://doi.org/10.1523/ENEURO.0193-16.2016 (2017). ENEURO.0193-16.2016.

  • De Domenico, M., Sasai, S. & Arenas, A. Mapping multiplex hubs in human functional brain networks. Front. NeuroSci. 10, 326. https://doi.org/10.3389/fnins.2016.00326 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17 (12), 683–696. https://doi.org/10.1016/j.tics.2013.09.012 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Crossley, N. A. et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain: J. Neurol. 137 (Pt 8), 2382–2395. https://doi.org/10.1093/brain/awu132 (2014).

    Article 

    Google Scholar 

  • Khan, S., Hashmi, J. A., Mamashli, F., Hämäläinen, M. S. & Kenet, T. Functional significance of human Resting-State networks hubs identified using MEG during the transition from childhood to adulthood. Front. Neurol. 13, 814940. https://doi.org/10.3389/fneur.2022.814940 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dubois, J. et al. The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants. Neuroscience 276, 48–71. https://doi.org/10.1016/j.neuroscience.2013.12.044 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lebel, C. & Deoni, S. The development of brain white matter microstructure. NeuroImage 182, 207–218. https://doi.org/10.1016/j.neuroimage.2017.12.097 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Chiang, M. C. et al. Genetics of white matter development: a DTI study of 705 twins and their siblings aged 12 to 29. NeuroImage 54 (3), 2308–2317. https://doi.org/10.1016/j.neuroimage.2010.10.015 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Groh, J. & Simons, M. White matter aging and its impact on brain function. Neuron, S0896-6273(24)00767-0. Advance online publication. (2024). https://doi.org/10.1016/j.neuron.2024.10.019

  • Bae, H. G., Kim, T. K., Suk, H. Y., Jung, S. & Jo, D. G. White matter and neurological disorders. Arch. Pharm. Res. 43 (9), 920–931. https://doi.org/10.1007/s12272-020-01270-x (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hamanaka, G., Ohtomo, R., Takase, H., Lok, J. & Arai, K. White-matter repair: Interaction between oligodendrocytes and the neurovascular unit. Brain Circulation. 4 (3), 118–123. https://doi.org/10.4103/bc.bc_15_18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lundgaard, I., Osório, M. J., Kress, B. T., Sanggaard, S. & Nedergaard, M. White matter astrocytes in health and disease. Neuroscience 276, 161–173. https://doi.org/10.1016/j.neuroscience.2013.10.050 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sporns, O. & Betzel, R. F. Modular brain networks. Ann. Rev. Psychol. 67, 613–640. https://doi.org/10.1146/annurev-psych-122414-033634 (2016).

    Article 

    Google Scholar 

  • van den Heuvel, M. P. & Hulshoff Pol, H. E. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacology: J. Eur. Coll. Neuropsychopharmacol. 20 (8), 519–534. https://doi.org/10.1016/j.euroneuro.2010.03.008 (2010).

    Article 
    CAS 

    Google Scholar 

  • Esposito, F. et al. Independent component model of the default-mode brain function: Combining individual-level and population-level analyses in resting-state fMRI. Magn. Reson. Imaging. 26 (7), 905–913. https://doi.org/10.1016/j.mri.2008.01.045 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Esposito, F. et al. Does the default-mode functional connectivity of the brain correlate with working-memory performances? Arch. Ital. Biol. 147 (1–2), 11–20 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Mesulam, M. Defining neurocognitive networks in the BOLD new world of computed connectivity. Neuron 62 (1), 1–3. https://doi.org/10.1016/j.neuron.2009.04.001 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Astolfi, L. et al. Estimation of the effective and functional human cortical connectivity with structural equation modeling and directed transfer function applied to high-resolution EEG. Magn. Reson. Imaging. 22 (10), 1457–1470. https://doi.org/10.1016/j.mri.2004.10.006 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Astolfi, L. et al. Assessing cortical functional connectivity by linear inverse Estimation and directed transfer function: Simulations and application to real data. Clin. Neurophysiology: Official J. Int. Federation Clin. Neurophysiol. 116 (4), 920–932. https://doi.org/10.1016/j.clinph.2004.10.012 (2005).

    Article 
    CAS 

    Google Scholar 

  • Astolfi, L. et al. Estimation of the cortical connectivity by high-resolution EEG and structural equation modeling: Simulations and application to finger tapping data. IEEE Trans. Bio Med. Eng. 52 (5), 757–768. https://doi.org/10.1109/TBME.2005.845371 (2005).

    Article 

    Google Scholar 

  • Schlögl, A. & Supp, G. Analyzing event-related EEG data with multivariate autoregressive parameters. Prog. Brain Res. 159, 135–147. https://doi.org/10.1016/S0079-6123(06)59009-0 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Sasai, S., Homae, F., Watanabe, H. & Taga, G. Frequency-specific functional connectivity in the brain during resting state revealed by NIRS. NeuroImage 56 (1), 252–257. https://doi.org/10.1016/j.neuroimage.2010.12.075 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Lu, C. M. et al. Use of fNIRS to assess resting state functional connectivity. J. Neurosci. Methods. 186 (2), 242–249. https://doi.org/10.1016/j.jneumeth.2009.11.010 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Sasai, S. et al. A NIRS-fMRI study of resting state network. NeuroImage 63 (1), 179–193. https://doi.org/10.1016/j.neuroimage.2012.06.011 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Boon, L. I., Tewarie, P., Berendse, H. W., Stam, C. J. & Hillebrand, A. Longitudinal consistency of source-space spectral power and functional connectivity using different magnetoencephalography recording systems. Sci. Rep. 11 (1), 16336. https://doi.org/10.1038/s41598-021-95363-2 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Demuru, M. et al. Functional and effective whole brain connectivity using magnetoencephalography to identify monozygotic twin pairs. Sci. Rep. 7 (1), 9685. https://doi.org/10.1038/s41598-017-10235-y (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Babiloni, F. From the analysis of the brain images to the study of brain networks using functional connectivity and multimodal brain signals. Brain Topogr. 23 (2), 115–118. https://doi.org/10.1007/s10548-010-0146-x (2010).

    Article 
    PubMed 

    Google Scholar 

  • Sanchez-Bornot, J. M. et al. High-dimensional brain-wide functional connectivity mapping in magnetoencephalography. J. Neurosci. Methods. 348, 108991. https://doi.org/10.1016/j.jneumeth.2020.108991 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Ferrari, M. & Quaresima, V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage 63 (2), 921–935. https://doi.org/10.1016/j.neuroimage.2012.03.049 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Schroeter, M. L., Kupka, T., Mildner, T., Uludağ, K. & von Cramon, D. Y. Investigating the post-stimulus undershoot of the BOLD signal–a simultaneous fMRI and fNIRS study. NeuroImage 30 (2), 349–358. https://doi.org/10.1016/j.neuroimage.2005.09.048 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Emir, U. E., Ozturk, C. & Akin, A. Multimodal investigation of fMRI and fNIRS derived breath hold BOLD signals with an expanded balloon model. Physiol. Meas. 29 (1), 49–63. https://doi.org/10.1088/0967-3334/29/1/004 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Steinbrink, J. et al. Illuminating the BOLD signal: Combined fMRI-fNIRS studies. Magn. Reson. Imaging. 24 (4), 495–505. https://doi.org/10.1016/j.mri.2005.12.034 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Seiyama, A. et al. Circulatory basis of fMRI signals: Relationship between changes in the hemodynamic parameters and BOLD signal intensity. NeuroImage 21 (4), 1204–1214. https://doi.org/10.1016/j.neuroimage.2003.12.002 (2004).

    Article 
    PubMed 

    Google Scholar 

  • MacIntosh, B. J., Klassen, L. M. & Menon, R. S. Transient hemodynamics during a breath hold challenge in a two part functional imaging study with simultaneous near-infrared spectroscopy in adult humans. NeuroImage 20 (2), 1246–1252. https://doi.org/10.1016/S1053-8119(03)00417-8 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Buxton, R. B., Uludağ, K., Dubowitz, D. J. & Liu, T. T. Modeling the hemodynamic response to brain activation. NeuroImage 23 (Suppl 1), S220–S233. https://doi.org/10.1016/j.neuroimage.2004.07.013 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Yeşilyurt, B., Uğurbil, K. & Uludağ, K. Dynamics and nonlinearities of the BOLD response at very short stimulus durations. Magn. Reson. Imaging. 26 (7), 853–862. https://doi.org/10.1016/j.mri.2008.01.008 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Tak, S. & Ye, J. C. Statistical analysis of fNIRS data: A comprehensive review. NeuroImage 85 Pt. 1, 72–91. https://doi.org/10.1016/j.neuroimage.2013.06.016 (2014).

    Article 

    Google Scholar 

  • Han, Y. M. Y. et al. Neurophysiological and behavioral effects of multisession prefrontal tDCS and concurrent cognitive remediation training in patients with autism spectrum disorder (ASD): A double-blind, randomized controlled fNIRS study. Brain Stimul. 15 (2), 414–425. https://doi.org/10.1016/j.brs.2022.02.004 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Niu, H. & He, Y. Resting-state functional brain connectivity: Lessons from functional near-infrared spectroscopy. Neuroscientist: Rev. J. Bringing Neurobiol. Neurol. Psychiatry. 20 (2), 173–188. https://doi.org/10.1177/1073858413502707 (2014).

    Article 

    Google Scholar 

  • Sun, W. et al. Narrowband Resting-State fNIRS functional connectivity in autism spectrum disorder. Front. Hum. Neurosci. 15, 643410. https://doi.org/10.3389/fnhum.2021.643410 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, T. et al. Altered complexity in resting-state fNIRS signal in autism: a multiscale entropy approach. Physiol. Meas. 42 (8). (2021).

  • Zhang, H. et al. Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements. NeuroImage 51 (3), 1150–1161. https://doi.org/10.1016/j.neuroimage.2010.02.080 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Su, W. C. et al. The use of functional near-infrared spectroscopy in tracking neurodevelopmental trajectories in infants and children with or without developmental disorders: a systematic review. Front. Psychiatry. 14, 1210000. https://doi.org/10.3389/fpsyt.2023.1210000 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, F. & Roeyers, H. Exploring brain functions in autism spectrum disorder: A systematic review on functional near-infrared spectroscopy (fNIRS) studies. Int. J. Psychophysiology: Official J. Int. Organ. Psychophysiol. 137, 41–53. https://doi.org/10.1016/j.ijpsycho.2019.01.003 (2019).

    Article 

    Google Scholar 

  • Zhang, H. Y. et al. Detection of PCC functional connectivity characteristics in resting-state fMRI in mild alzheimer’s disease. Behav. Brain. Res. 197 (1), 103–108. https://doi.org/10.1016/j.bbr.2008.08.012 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Kang, M. J., Cho, S. Y., Choi, J. K. & Yang, Y. S. fNIRS assessment during cognitive tasks in elderly patients with depressive symptoms. Brain Sci. 13 (7), 1054. https://doi.org/10.3390/brainsci13071054 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, H., Lu, B., Zhang, Y. & Li, T. Differences in prefrontal cortex activation in Chinese college students with different severities of depressive symptoms: A large sample of functional near-infrared spectroscopy (fNIRS) findings. J. Affect. Disord. 350, 521–530. https://doi.org/10.1016/j.jad.2024.01.044 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Lu, J. et al. An fNIRS-Based Dynamic Functional Connectivity Analysis Method to Signify Functional Neurodegeneration of Parkinson’s Disease. IEEE Trans. Neural Syst. Rehabilitation Engineering: Publication IEEE Eng. Med. Biology Soc. PP https://doi.org/10.1109/TNSRE.2023.3242263 (2023). https://doi.org/10.1109/TNSRE.2023.3242263 Advance online publication.

  • Cheng, L. et al. Principal States of dynamic functional connectivity reveal the link between Resting-State and Task-State brain: an fMRI study. Int. J. Neural Syst. 28 (7), 1850002. https://doi.org/10.1142/S0129065718500028 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Hao, X., Huang, T., Song, Y., Kong, X. & Liu, J. Development of navigation network revealed by resting-state and task-state functional connectivity. NeuroImage 243, 118515. https://doi.org/10.1016/j.neuroimage.2021.118515 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Zhao, W. et al. Task fMRI paradigms May capture more behaviorally relevant information than resting-state functional connectivity. NeuroImage 270, 119946. https://doi.org/10.1016/j.neuroimage.2023.119946 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Huang, S., De Brigard, F., Cabeza, R. & Davis, S. W. Connectivity analyses for task-based fMRI. Phys. Life Rev. 49, 139–156. https://doi.org/10.1016/j.plrev.2024.04.012 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cole, M. W., Ito, T., Cocuzza, C. & Sanchez-Romero, R. The functional relevance of Task-State functional connectivity. J. Neuroscience: Official J. Soc. Neurosci. 41 (12), 2684–2702. https://doi.org/10.1523/JNEUROSCI.1713-20.2021 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gratton, C. et al. Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron 98 (2), 439–452e5. https://doi.org/10.1016/j.neuron.2018.03.035 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Di, X., Gohel, S., Kim, E. H. & Biswal, B. B. Task vs. rest-different network configurations between the coactivation and the resting-state brain networks. Front. Hum. Neurosci. 7, 493. https://doi.org/10.3389/fnhum.2013.00493 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dehaene-Lambertz, G. et al. Functional organization of Perisylvian activation during presentation of sentences in preverbal infants. Proc. Natl. Acad. Sci. U.S.A. 103 (38), 14240–14245. https://doi.org/10.1073/pnas.0606302103 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van der Kant, A., Biro, S., Levelt, C. & Huijbregts, S. Negative affect is related to reduced differential neural responses to social and non-social stimuli in 5-to-8-month-old infants: A functional near-infrared spectroscopy-study. Dev. Cogn. Neurosci. 30, 23–30. https://doi.org/10.1016/j.dcn.2017.12.003 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Wu, Y. J. et al. Rapid learning of a phonemic discrimination in the first hours of life. Nat. Hum. Behav. 6 (8), 1169–1179. https://doi.org/10.1038/s41562-022-01355-1 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pickler, R. et al. Using functional connectivity magnetic resonance imaging to measure brain connectivity in preterm infants. Nurs. Res. 66 (6), 490–495. https://doi.org/10.1097/NNR.0000000000000241 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dehaene-Lambertz, G. et al. Language or music, mother or mozart?? Structural and environmental influences on infants’ Language networks. Brain Lang. 114 (2), 53–65. https://doi.org/10.1016/j.bandl.2009.09.003 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Emberson, L. L., Zinszer, B. D., Raizada, R. D. S. & Aslin, R. N. Decoding the infant mind: multivariate pattern analysis (MVPA) using fNIRS. PloS One. 12 (4), e0172500. https://doi.org/10.1371/journal.pone.0172500 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mitra, A., Snyder, A. Z., Tagliazucchi, E., Laufs, H., Elison, J., Emerson, R. W.,Shen, M. D., Wolff, J. J., Botteron, K. N., Dager, S., Estes, A. M., Evans, A., Gerig,G., Hazlett, H. C., Paterson, S. J., Schultz, R. T., Styner, M. A., Zwaigenbaum, L.,IBIS Network, Schlaggar, B. L., … Raichle, M. (2017). Resting-state fMRI in sleeping infants more closely resembles adult sleep than adult wakefulness. PloS one, 12(11),e0188122. https://doi.org/10.1371/journal.pone.0188122.

  • Taga, G., Watanabe, H. & Homae, F. Developmental changes in cortical sensory processing during wakefulness and sleep. NeuroImage 178, 519–530. https://doi.org/10.1016/j.neuroimage.2018.05.075 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Akiyama, A. et al. The effect of music and white noise on electroencephalographic (EEG) functional connectivity in neonates in the neonatal intensive care unit. J. Child. Neurol. 36 (1), 38–47. https://doi.org/10.1177/0883073820947894 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Fan, Y. & Luo, H. Reactivating ordinal position information from auditory sequence memory in human brains. Cerebral cortex (New York, N.Y.: 1991), 33(10), 5924–5936. (2023). https://doi.org/10.1093/cercor/bhac471

  • Wild, C. J. et al. Adult-like processing of naturalistic sounds in auditory cortex by 3- and 9-month old infants. NeuroImage 157, 623–634. https://doi.org/10.1016/j.neuroimage.2017.06.038 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Kelsey, C. M. et al. Gut microbiota composition is associated with newborn functional brain connectivity and behavioral temperament. Brain. Behav. Immun. 91, 472–486. https://doi.org/10.1016/j.bbi.2020.11.003 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Agyeman, K. et al. Task-based functional neuroimaging in infants: A systematic review. Front. NeuroSci. 17, 1233990. https://doi.org/10.3389/fnins.2023.1233990 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Farah, R. & Horowitz-Kraus, T. Increased Functional Connectivity Within and Between Cognitive-Control Networks from Early Infancy to Nine Years During Story Listening. Brain Connect., 9(3), 285–295. https://doi.org/10.1089/brain.2018.0625 (2019).

  • Andreu-Perez, J. et al. Explainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience. Commun. Biology. 4 (1), 1077. https://doi.org/10.1038/s42003-021-02534-y (2021).

    Article 

    Google Scholar 

  • Baek, S., Jaffe-Dax, S., Bejjanki, V. R. & Emberson, L. Temporal predictability modulates cortical activity and functional connectivity in the frontoparietal network in 6-Month-Old infants. J. Cogn. Neurosci. 34 (5), 766–775. https://doi.org/10.1162/jocn_a_01828 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Sun, L., Zhao, T., Liang, X., Xia, M., Li, Q., Liao, X., Gong, G., Wang, Q., Pang,C., Yu, Q., Bi, Y., Chen, P., Chen, R., Chen, Y., Chen, T., Cheng, J., Cheng, Y.,Cui, Z., Dai, Z., Deng, Y., He, Y. (2025). Human lifespan changes in the brain’s functional connectome. Nature neuroscience, 28(4), 891–901. https://doi.org/10.1038/s41593-025-01907-4.

  • Marrus, N., Eggebrecht, A. T., Todorov, A., Elison, J. T., Wolff, J. J., Cole, L.,Gao, W., Pandey, J., Shen, M. D., Swanson, M. R., Emerson, R. W., Klohr, C. L., Adams,C. M., Estes, A. M., Zwaigenbaum, L., Botteron, K. N., McKinstry, R. C., Constantino,J. N., Evans, A. C., Hazlett, H. C., … Pruett, J. R., Jr (2018). Walking, Gross Motor Development, and Brain Functional Connectivity in Infants and Toddlers. Cerebral cortex(New York, N.Y.: 1991), 28(2), 750–763. https://doi.org/10.1093/cercor/bhx313.

  • Herzmann, C. S. et al. Cerebellar functional connectivity in Term- and very Preterm-Born infants. Cereb. Cortex (New York N Y : 1991). 29 (3), 1174–1184. https://doi.org/10.1093/cercor/bhy023 (2019).

    Article 

    Google Scholar 

  • McKinnon, C. J. et al. Restricted and repetitive behavior and brain functional connectivity in infants at risk for developing autism spectrum disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 4 (1), 50–61. https://doi.org/10.1016/j.bpsc.2018.09.008 (2019).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Paranawithana, I., Mao, D., McKay, C. M. & Wong, Y. T. Language networks of normal-hearing infants exhibit topological differences between resting and steady states: an fNIRS functional connectivity study. Hum. Brain. Mapp. 45 (13), e70021. https://doi.org/10.1002/hbm.70021 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, O. W. et al. Two independent response mechanisms to auditory stimuli measured with functional Near-Infrared spectroscopy in sleeping infants. Trends Hear. 28, 23312165241258056. https://doi.org/10.1177/23312165241258056 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Michael, C. et al. Reconfiguration of functional brain network organization and dynamics with changing cognitive demands in children with attention-deficit/hyperactivity disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. S2451-9022(24)00343-4 https://doi.org/10.1016/j.bpsc.2024.11.006 (2024). Advance online publication.

  • Madden, D. J. et al. Age-related differences in resting-state, task-related, and structural brain connectivity: graph theoretical analyses and visual search performance. Brain Struct. Function. 229 (7), 1533–1559. https://doi.org/10.1007/s00429-024-02807-2 (2024).

    Article 

    Google Scholar 

  • Bayet, L. et al. Neural responses to happy, fearful and angry faces of varying identities in 5- and 7-month-old infants. Dev. Cogn. Neurosci. 47, 100882. https://doi.org/10.1016/j.dcn.2020.100882 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Oliveira, L. S., Didoné, D. D. & Durante, A. S. Automated cortical auditory evoked potentials threshold Estimation in neonates. Braz. J. Otorhinolaryngol. 85 (2), 206–212. https://doi.org/10.1016/j.bjorl.2018.01.001 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Samantaray, T., Saini, J. & Gupta, C. N. Sparsity Dependent Metrics Depict Alteration of Brain Network Connectivity in Parkinson’s Disease. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2022, 698–701. (2022). https://doi.org/10.1109/EMBC48229.2022.9871258

  • Ghosal, N., Basu, S. & Bhaumik, D. Detection of sparse differential dependent functional brain connectivity. Stat. Med. 42 (25), 4664–4680. https://doi.org/10.1002/sim.9882 (2023).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Hou, X. et al. NIRS-KIT: a MATLAB toolbox for both resting-state and task fNIRS data analysis. Neurophotonics 8 (1), 010802. https://doi.org/10.1117/1.NPh.8.1.010802 (2021).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fishburn, F. A., Ludlum, R. S., Vaidya, C. J. & Medvedev, A. V. Temporal derivative distribution repair (TDDR): A motion correction method for fNIRS. NeuroImage 184, 171–179. https://doi.org/10.1016/j.neuroimage.2018.09.025 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34 (4), 537–541. https://doi.org/10.1002/mrm.1910340409 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8 (9), 700–711. https://doi.org/10.1038/nrn2201 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Medani, T. et al. Brainstorm-DUNEuro: an integrated and user-friendly finite element method for modeling electromagnetic brain activity. NeuroImage 267, 119851. https://doi.org/10.1016/j.neuroimage.2022.119851 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Fu, X. & Richards, J. E. DevfOLD: a toolbox for designing age-specific fNIRS channel placement. Neurophotonics 8 (4), 045003. https://doi.org/10.1117/1.NPh.8.4.045003 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xia, M., Wang, J. & He, Y. BrainNet viewer: a network visualization tool for human brain connectomics. PloS One. 8 (7), e68910. https://doi.org/10.1371/journal.pone.0068910 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, J. et al. FC-NIRS: A Functional Connectivity Analysis Tool for Near-Infrared Spectroscopy Data. BioMed research international, 2015, 248724. (2015). https://doi.org/10.1155/2015/248724

  • Bassett, D. S. & Bullmore, E. T. Small-worldness brain networks revisited. The neuroscientist: a review journal bringing neurobiology. Neurol. Psychiatry. 23 (5), 499–516. https://doi.org/10.1177/1073858416667720 (2017).

    Article 

    Google Scholar 

  • Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10 (3), 186–198. https://doi.org/10.1038/nrn2575 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Continue Reading