Shine, J. M., Lewis, L. D., Garrett, D. D. & Hwang, K. The impact of the human thalamus on brain-wide information processing. Nat. Rev. Neurosci. 24 (7), 416–430. https://doi.org/10.1038/s41583-023-00701-0 (2023).
Google Scholar
Sundermann, B. & Pfleiderer, B. Functional connectivity profile of the human inferior frontal junction: Involvement in a cognitive control network. BMC Neurosci. 13, 119. https://doi.org/10.1186/1471-2202-13-119 (2012).
Google Scholar
Singer, W. Recurrent dynamics in the cerebral cortex: Integration of sensory evidence with stored knowledge. Proc. Natl. Acad. Sci. U.S.A. 118 (33), e2101043118. https://doi.org/10.1073/pnas.2101043118 (2021).
Google Scholar
Gogolla, N. The insular cortex. Curr. Biology: CB. 27 (12), R580–R586. https://doi.org/10.1016/j.cub.2017.05.010 (2017).
Google Scholar
Klingler, E. Development and organization of the evolutionarily conserved Three-Layered olfactory cortex. eNeuro 4 (1). https://doi.org/10.1523/ENEURO.0193-16.2016 (2017). ENEURO.0193-16.2016.
De Domenico, M., Sasai, S. & Arenas, A. Mapping multiplex hubs in human functional brain networks. Front. NeuroSci. 10, 326. https://doi.org/10.3389/fnins.2016.00326 (2016).
Google Scholar
van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17 (12), 683–696. https://doi.org/10.1016/j.tics.2013.09.012 (2013).
Google Scholar
Crossley, N. A. et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain: J. Neurol. 137 (Pt 8), 2382–2395. https://doi.org/10.1093/brain/awu132 (2014).
Google Scholar
Khan, S., Hashmi, J. A., Mamashli, F., Hämäläinen, M. S. & Kenet, T. Functional significance of human Resting-State networks hubs identified using MEG during the transition from childhood to adulthood. Front. Neurol. 13, 814940. https://doi.org/10.3389/fneur.2022.814940 (2022).
Google Scholar
Dubois, J. et al. The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants. Neuroscience 276, 48–71. https://doi.org/10.1016/j.neuroscience.2013.12.044 (2014).
Google Scholar
Lebel, C. & Deoni, S. The development of brain white matter microstructure. NeuroImage 182, 207–218. https://doi.org/10.1016/j.neuroimage.2017.12.097 (2018).
Google Scholar
Chiang, M. C. et al. Genetics of white matter development: a DTI study of 705 twins and their siblings aged 12 to 29. NeuroImage 54 (3), 2308–2317. https://doi.org/10.1016/j.neuroimage.2010.10.015 (2011).
Google Scholar
Groh, J. & Simons, M. White matter aging and its impact on brain function. Neuron, S0896-6273(24)00767-0. Advance online publication. (2024). https://doi.org/10.1016/j.neuron.2024.10.019
Bae, H. G., Kim, T. K., Suk, H. Y., Jung, S. & Jo, D. G. White matter and neurological disorders. Arch. Pharm. Res. 43 (9), 920–931. https://doi.org/10.1007/s12272-020-01270-x (2020).
Google Scholar
Hamanaka, G., Ohtomo, R., Takase, H., Lok, J. & Arai, K. White-matter repair: Interaction between oligodendrocytes and the neurovascular unit. Brain Circulation. 4 (3), 118–123. https://doi.org/10.4103/bc.bc_15_18 (2018).
Google Scholar
Lundgaard, I., Osório, M. J., Kress, B. T., Sanggaard, S. & Nedergaard, M. White matter astrocytes in health and disease. Neuroscience 276, 161–173. https://doi.org/10.1016/j.neuroscience.2013.10.050 (2014).
Google Scholar
Sporns, O. & Betzel, R. F. Modular brain networks. Ann. Rev. Psychol. 67, 613–640. https://doi.org/10.1146/annurev-psych-122414-033634 (2016).
Google Scholar
van den Heuvel, M. P. & Hulshoff Pol, H. E. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacology: J. Eur. Coll. Neuropsychopharmacol. 20 (8), 519–534. https://doi.org/10.1016/j.euroneuro.2010.03.008 (2010).
Google Scholar
Esposito, F. et al. Independent component model of the default-mode brain function: Combining individual-level and population-level analyses in resting-state fMRI. Magn. Reson. Imaging. 26 (7), 905–913. https://doi.org/10.1016/j.mri.2008.01.045 (2008).
Google Scholar
Esposito, F. et al. Does the default-mode functional connectivity of the brain correlate with working-memory performances? Arch. Ital. Biol. 147 (1–2), 11–20 (2009).
Google Scholar
Mesulam, M. Defining neurocognitive networks in the BOLD new world of computed connectivity. Neuron 62 (1), 1–3. https://doi.org/10.1016/j.neuron.2009.04.001 (2009).
Google Scholar
Astolfi, L. et al. Estimation of the effective and functional human cortical connectivity with structural equation modeling and directed transfer function applied to high-resolution EEG. Magn. Reson. Imaging. 22 (10), 1457–1470. https://doi.org/10.1016/j.mri.2004.10.006 (2004).
Google Scholar
Astolfi, L. et al. Assessing cortical functional connectivity by linear inverse Estimation and directed transfer function: Simulations and application to real data. Clin. Neurophysiology: Official J. Int. Federation Clin. Neurophysiol. 116 (4), 920–932. https://doi.org/10.1016/j.clinph.2004.10.012 (2005).
Google Scholar
Astolfi, L. et al. Estimation of the cortical connectivity by high-resolution EEG and structural equation modeling: Simulations and application to finger tapping data. IEEE Trans. Bio Med. Eng. 52 (5), 757–768. https://doi.org/10.1109/TBME.2005.845371 (2005).
Google Scholar
Schlögl, A. & Supp, G. Analyzing event-related EEG data with multivariate autoregressive parameters. Prog. Brain Res. 159, 135–147. https://doi.org/10.1016/S0079-6123(06)59009-0 (2006).
Google Scholar
Sasai, S., Homae, F., Watanabe, H. & Taga, G. Frequency-specific functional connectivity in the brain during resting state revealed by NIRS. NeuroImage 56 (1), 252–257. https://doi.org/10.1016/j.neuroimage.2010.12.075 (2011).
Google Scholar
Lu, C. M. et al. Use of fNIRS to assess resting state functional connectivity. J. Neurosci. Methods. 186 (2), 242–249. https://doi.org/10.1016/j.jneumeth.2009.11.010 (2010).
Google Scholar
Sasai, S. et al. A NIRS-fMRI study of resting state network. NeuroImage 63 (1), 179–193. https://doi.org/10.1016/j.neuroimage.2012.06.011 (2012).
Google Scholar
Boon, L. I., Tewarie, P., Berendse, H. W., Stam, C. J. & Hillebrand, A. Longitudinal consistency of source-space spectral power and functional connectivity using different magnetoencephalography recording systems. Sci. Rep. 11 (1), 16336. https://doi.org/10.1038/s41598-021-95363-2 (2021).
Google Scholar
Demuru, M. et al. Functional and effective whole brain connectivity using magnetoencephalography to identify monozygotic twin pairs. Sci. Rep. 7 (1), 9685. https://doi.org/10.1038/s41598-017-10235-y (2017).
Google Scholar
Babiloni, F. From the analysis of the brain images to the study of brain networks using functional connectivity and multimodal brain signals. Brain Topogr. 23 (2), 115–118. https://doi.org/10.1007/s10548-010-0146-x (2010).
Google Scholar
Sanchez-Bornot, J. M. et al. High-dimensional brain-wide functional connectivity mapping in magnetoencephalography. J. Neurosci. Methods. 348, 108991. https://doi.org/10.1016/j.jneumeth.2020.108991 (2021).
Google Scholar
Ferrari, M. & Quaresima, V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage 63 (2), 921–935. https://doi.org/10.1016/j.neuroimage.2012.03.049 (2012).
Google Scholar
Schroeter, M. L., Kupka, T., Mildner, T., Uludağ, K. & von Cramon, D. Y. Investigating the post-stimulus undershoot of the BOLD signal–a simultaneous fMRI and fNIRS study. NeuroImage 30 (2), 349–358. https://doi.org/10.1016/j.neuroimage.2005.09.048 (2006).
Google Scholar
Emir, U. E., Ozturk, C. & Akin, A. Multimodal investigation of fMRI and fNIRS derived breath hold BOLD signals with an expanded balloon model. Physiol. Meas. 29 (1), 49–63. https://doi.org/10.1088/0967-3334/29/1/004 (2008).
Google Scholar
Steinbrink, J. et al. Illuminating the BOLD signal: Combined fMRI-fNIRS studies. Magn. Reson. Imaging. 24 (4), 495–505. https://doi.org/10.1016/j.mri.2005.12.034 (2006).
Google Scholar
Seiyama, A. et al. Circulatory basis of fMRI signals: Relationship between changes in the hemodynamic parameters and BOLD signal intensity. NeuroImage 21 (4), 1204–1214. https://doi.org/10.1016/j.neuroimage.2003.12.002 (2004).
Google Scholar
MacIntosh, B. J., Klassen, L. M. & Menon, R. S. Transient hemodynamics during a breath hold challenge in a two part functional imaging study with simultaneous near-infrared spectroscopy in adult humans. NeuroImage 20 (2), 1246–1252. https://doi.org/10.1016/S1053-8119(03)00417-8 (2003).
Google Scholar
Buxton, R. B., Uludağ, K., Dubowitz, D. J. & Liu, T. T. Modeling the hemodynamic response to brain activation. NeuroImage 23 (Suppl 1), S220–S233. https://doi.org/10.1016/j.neuroimage.2004.07.013 (2004).
Google Scholar
Yeşilyurt, B., Uğurbil, K. & Uludağ, K. Dynamics and nonlinearities of the BOLD response at very short stimulus durations. Magn. Reson. Imaging. 26 (7), 853–862. https://doi.org/10.1016/j.mri.2008.01.008 (2008).
Google Scholar
Tak, S. & Ye, J. C. Statistical analysis of fNIRS data: A comprehensive review. NeuroImage 85 Pt. 1, 72–91. https://doi.org/10.1016/j.neuroimage.2013.06.016 (2014).
Google Scholar
Han, Y. M. Y. et al. Neurophysiological and behavioral effects of multisession prefrontal tDCS and concurrent cognitive remediation training in patients with autism spectrum disorder (ASD): A double-blind, randomized controlled fNIRS study. Brain Stimul. 15 (2), 414–425. https://doi.org/10.1016/j.brs.2022.02.004 (2022).
Google Scholar
Niu, H. & He, Y. Resting-state functional brain connectivity: Lessons from functional near-infrared spectroscopy. Neuroscientist: Rev. J. Bringing Neurobiol. Neurol. Psychiatry. 20 (2), 173–188. https://doi.org/10.1177/1073858413502707 (2014).
Google Scholar
Sun, W. et al. Narrowband Resting-State fNIRS functional connectivity in autism spectrum disorder. Front. Hum. Neurosci. 15, 643410. https://doi.org/10.3389/fnhum.2021.643410 (2021).
Google Scholar
Zhang, T. et al. Altered complexity in resting-state fNIRS signal in autism: a multiscale entropy approach. Physiol. Meas. 42 (8). (2021).
Zhang, H. et al. Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements. NeuroImage 51 (3), 1150–1161. https://doi.org/10.1016/j.neuroimage.2010.02.080 (2010).
Google Scholar
Su, W. C. et al. The use of functional near-infrared spectroscopy in tracking neurodevelopmental trajectories in infants and children with or without developmental disorders: a systematic review. Front. Psychiatry. 14, 1210000. https://doi.org/10.3389/fpsyt.2023.1210000 (2023).
Google Scholar
Zhang, F. & Roeyers, H. Exploring brain functions in autism spectrum disorder: A systematic review on functional near-infrared spectroscopy (fNIRS) studies. Int. J. Psychophysiology: Official J. Int. Organ. Psychophysiol. 137, 41–53. https://doi.org/10.1016/j.ijpsycho.2019.01.003 (2019).
Google Scholar
Zhang, H. Y. et al. Detection of PCC functional connectivity characteristics in resting-state fMRI in mild alzheimer’s disease. Behav. Brain. Res. 197 (1), 103–108. https://doi.org/10.1016/j.bbr.2008.08.012 (2009).
Google Scholar
Kang, M. J., Cho, S. Y., Choi, J. K. & Yang, Y. S. fNIRS assessment during cognitive tasks in elderly patients with depressive symptoms. Brain Sci. 13 (7), 1054. https://doi.org/10.3390/brainsci13071054 (2023).
Google Scholar
Wu, H., Lu, B., Zhang, Y. & Li, T. Differences in prefrontal cortex activation in Chinese college students with different severities of depressive symptoms: A large sample of functional near-infrared spectroscopy (fNIRS) findings. J. Affect. Disord. 350, 521–530. https://doi.org/10.1016/j.jad.2024.01.044 (2024).
Google Scholar
Lu, J. et al. An fNIRS-Based Dynamic Functional Connectivity Analysis Method to Signify Functional Neurodegeneration of Parkinson’s Disease. IEEE Trans. Neural Syst. Rehabilitation Engineering: Publication IEEE Eng. Med. Biology Soc. PP https://doi.org/10.1109/TNSRE.2023.3242263 (2023). https://doi.org/10.1109/TNSRE.2023.3242263 Advance online publication.
Cheng, L. et al. Principal States of dynamic functional connectivity reveal the link between Resting-State and Task-State brain: an fMRI study. Int. J. Neural Syst. 28 (7), 1850002. https://doi.org/10.1142/S0129065718500028 (2018).
Google Scholar
Hao, X., Huang, T., Song, Y., Kong, X. & Liu, J. Development of navigation network revealed by resting-state and task-state functional connectivity. NeuroImage 243, 118515. https://doi.org/10.1016/j.neuroimage.2021.118515 (2021).
Google Scholar
Zhao, W. et al. Task fMRI paradigms May capture more behaviorally relevant information than resting-state functional connectivity. NeuroImage 270, 119946. https://doi.org/10.1016/j.neuroimage.2023.119946 (2023).
Google Scholar
Huang, S., De Brigard, F., Cabeza, R. & Davis, S. W. Connectivity analyses for task-based fMRI. Phys. Life Rev. 49, 139–156. https://doi.org/10.1016/j.plrev.2024.04.012 (2024).
Google Scholar
Cole, M. W., Ito, T., Cocuzza, C. & Sanchez-Romero, R. The functional relevance of Task-State functional connectivity. J. Neuroscience: Official J. Soc. Neurosci. 41 (12), 2684–2702. https://doi.org/10.1523/JNEUROSCI.1713-20.2021 (2021).
Google Scholar
Gratton, C. et al. Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron 98 (2), 439–452e5. https://doi.org/10.1016/j.neuron.2018.03.035 (2018).
Google Scholar
Di, X., Gohel, S., Kim, E. H. & Biswal, B. B. Task vs. rest-different network configurations between the coactivation and the resting-state brain networks. Front. Hum. Neurosci. 7, 493. https://doi.org/10.3389/fnhum.2013.00493 (2013).
Google Scholar
Dehaene-Lambertz, G. et al. Functional organization of Perisylvian activation during presentation of sentences in preverbal infants. Proc. Natl. Acad. Sci. U.S.A. 103 (38), 14240–14245. https://doi.org/10.1073/pnas.0606302103 (2006).
Google Scholar
van der Kant, A., Biro, S., Levelt, C. & Huijbregts, S. Negative affect is related to reduced differential neural responses to social and non-social stimuli in 5-to-8-month-old infants: A functional near-infrared spectroscopy-study. Dev. Cogn. Neurosci. 30, 23–30. https://doi.org/10.1016/j.dcn.2017.12.003 (2018).
Google Scholar
Wu, Y. J. et al. Rapid learning of a phonemic discrimination in the first hours of life. Nat. Hum. Behav. 6 (8), 1169–1179. https://doi.org/10.1038/s41562-022-01355-1 (2022).
Google Scholar
Pickler, R. et al. Using functional connectivity magnetic resonance imaging to measure brain connectivity in preterm infants. Nurs. Res. 66 (6), 490–495. https://doi.org/10.1097/NNR.0000000000000241 (2017).
Google Scholar
Dehaene-Lambertz, G. et al. Language or music, mother or mozart?? Structural and environmental influences on infants’ Language networks. Brain Lang. 114 (2), 53–65. https://doi.org/10.1016/j.bandl.2009.09.003 (2010).
Google Scholar
Emberson, L. L., Zinszer, B. D., Raizada, R. D. S. & Aslin, R. N. Decoding the infant mind: multivariate pattern analysis (MVPA) using fNIRS. PloS One. 12 (4), e0172500. https://doi.org/10.1371/journal.pone.0172500 (2017).
Google Scholar
Mitra, A., Snyder, A. Z., Tagliazucchi, E., Laufs, H., Elison, J., Emerson, R. W.,Shen, M. D., Wolff, J. J., Botteron, K. N., Dager, S., Estes, A. M., Evans, A., Gerig,G., Hazlett, H. C., Paterson, S. J., Schultz, R. T., Styner, M. A., Zwaigenbaum, L.,IBIS Network, Schlaggar, B. L., … Raichle, M. (2017). Resting-state fMRI in sleeping infants more closely resembles adult sleep than adult wakefulness. PloS one, 12(11),e0188122. https://doi.org/10.1371/journal.pone.0188122.
Taga, G., Watanabe, H. & Homae, F. Developmental changes in cortical sensory processing during wakefulness and sleep. NeuroImage 178, 519–530. https://doi.org/10.1016/j.neuroimage.2018.05.075 (2018).
Google Scholar
Akiyama, A. et al. The effect of music and white noise on electroencephalographic (EEG) functional connectivity in neonates in the neonatal intensive care unit. J. Child. Neurol. 36 (1), 38–47. https://doi.org/10.1177/0883073820947894 (2021).
Google Scholar
Fan, Y. & Luo, H. Reactivating ordinal position information from auditory sequence memory in human brains. Cerebral cortex (New York, N.Y.: 1991), 33(10), 5924–5936. (2023). https://doi.org/10.1093/cercor/bhac471
Wild, C. J. et al. Adult-like processing of naturalistic sounds in auditory cortex by 3- and 9-month old infants. NeuroImage 157, 623–634. https://doi.org/10.1016/j.neuroimage.2017.06.038 (2017).
Google Scholar
Kelsey, C. M. et al. Gut microbiota composition is associated with newborn functional brain connectivity and behavioral temperament. Brain. Behav. Immun. 91, 472–486. https://doi.org/10.1016/j.bbi.2020.11.003 (2021).
Google Scholar
Agyeman, K. et al. Task-based functional neuroimaging in infants: A systematic review. Front. NeuroSci. 17, 1233990. https://doi.org/10.3389/fnins.2023.1233990 (2023).
Google Scholar
Farah, R. & Horowitz-Kraus, T. Increased Functional Connectivity Within and Between Cognitive-Control Networks from Early Infancy to Nine Years During Story Listening. Brain Connect., 9(3), 285–295. https://doi.org/10.1089/brain.2018.0625 (2019).
Andreu-Perez, J. et al. Explainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience. Commun. Biology. 4 (1), 1077. https://doi.org/10.1038/s42003-021-02534-y (2021).
Google Scholar
Baek, S., Jaffe-Dax, S., Bejjanki, V. R. & Emberson, L. Temporal predictability modulates cortical activity and functional connectivity in the frontoparietal network in 6-Month-Old infants. J. Cogn. Neurosci. 34 (5), 766–775. https://doi.org/10.1162/jocn_a_01828 (2022).
Google Scholar
Sun, L., Zhao, T., Liang, X., Xia, M., Li, Q., Liao, X., Gong, G., Wang, Q., Pang,C., Yu, Q., Bi, Y., Chen, P., Chen, R., Chen, Y., Chen, T., Cheng, J., Cheng, Y.,Cui, Z., Dai, Z., Deng, Y., He, Y. (2025). Human lifespan changes in the brain’s functional connectome. Nature neuroscience, 28(4), 891–901. https://doi.org/10.1038/s41593-025-01907-4.
Marrus, N., Eggebrecht, A. T., Todorov, A., Elison, J. T., Wolff, J. J., Cole, L.,Gao, W., Pandey, J., Shen, M. D., Swanson, M. R., Emerson, R. W., Klohr, C. L., Adams,C. M., Estes, A. M., Zwaigenbaum, L., Botteron, K. N., McKinstry, R. C., Constantino,J. N., Evans, A. C., Hazlett, H. C., … Pruett, J. R., Jr (2018). Walking, Gross Motor Development, and Brain Functional Connectivity in Infants and Toddlers. Cerebral cortex(New York, N.Y.: 1991), 28(2), 750–763. https://doi.org/10.1093/cercor/bhx313.
Herzmann, C. S. et al. Cerebellar functional connectivity in Term- and very Preterm-Born infants. Cereb. Cortex (New York N Y : 1991). 29 (3), 1174–1184. https://doi.org/10.1093/cercor/bhy023 (2019).
Google Scholar
McKinnon, C. J. et al. Restricted and repetitive behavior and brain functional connectivity in infants at risk for developing autism spectrum disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 4 (1), 50–61. https://doi.org/10.1016/j.bpsc.2018.09.008 (2019).
Google Scholar
Paranawithana, I., Mao, D., McKay, C. M. & Wong, Y. T. Language networks of normal-hearing infants exhibit topological differences between resting and steady states: an fNIRS functional connectivity study. Hum. Brain. Mapp. 45 (13), e70021. https://doi.org/10.1002/hbm.70021 (2024).
Google Scholar
Lee, O. W. et al. Two independent response mechanisms to auditory stimuli measured with functional Near-Infrared spectroscopy in sleeping infants. Trends Hear. 28, 23312165241258056. https://doi.org/10.1177/23312165241258056 (2024).
Google Scholar
Michael, C. et al. Reconfiguration of functional brain network organization and dynamics with changing cognitive demands in children with attention-deficit/hyperactivity disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging. S2451-9022(24)00343-4 https://doi.org/10.1016/j.bpsc.2024.11.006 (2024). Advance online publication.
Madden, D. J. et al. Age-related differences in resting-state, task-related, and structural brain connectivity: graph theoretical analyses and visual search performance. Brain Struct. Function. 229 (7), 1533–1559. https://doi.org/10.1007/s00429-024-02807-2 (2024).
Google Scholar
Bayet, L. et al. Neural responses to happy, fearful and angry faces of varying identities in 5- and 7-month-old infants. Dev. Cogn. Neurosci. 47, 100882. https://doi.org/10.1016/j.dcn.2020.100882 (2021).
Google Scholar
Oliveira, L. S., Didoné, D. D. & Durante, A. S. Automated cortical auditory evoked potentials threshold Estimation in neonates. Braz. J. Otorhinolaryngol. 85 (2), 206–212. https://doi.org/10.1016/j.bjorl.2018.01.001 (2019).
Google Scholar
Samantaray, T., Saini, J. & Gupta, C. N. Sparsity Dependent Metrics Depict Alteration of Brain Network Connectivity in Parkinson’s Disease. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2022, 698–701. (2022). https://doi.org/10.1109/EMBC48229.2022.9871258
Ghosal, N., Basu, S. & Bhaumik, D. Detection of sparse differential dependent functional brain connectivity. Stat. Med. 42 (25), 4664–4680. https://doi.org/10.1002/sim.9882 (2023).
Google Scholar
Hou, X. et al. NIRS-KIT: a MATLAB toolbox for both resting-state and task fNIRS data analysis. Neurophotonics 8 (1), 010802. https://doi.org/10.1117/1.NPh.8.1.010802 (2021).
Google Scholar
Fishburn, F. A., Ludlum, R. S., Vaidya, C. J. & Medvedev, A. V. Temporal derivative distribution repair (TDDR): A motion correction method for fNIRS. NeuroImage 184, 171–179. https://doi.org/10.1016/j.neuroimage.2018.09.025 (2019).
Google Scholar
Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34 (4), 537–541. https://doi.org/10.1002/mrm.1910340409 (1995).
Google Scholar
Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8 (9), 700–711. https://doi.org/10.1038/nrn2201 (2007).
Google Scholar
Medani, T. et al. Brainstorm-DUNEuro: an integrated and user-friendly finite element method for modeling electromagnetic brain activity. NeuroImage 267, 119851. https://doi.org/10.1016/j.neuroimage.2022.119851 (2023).
Google Scholar
Fu, X. & Richards, J. E. DevfOLD: a toolbox for designing age-specific fNIRS channel placement. Neurophotonics 8 (4), 045003. https://doi.org/10.1117/1.NPh.8.4.045003 (2021).
Google Scholar
Xia, M., Wang, J. & He, Y. BrainNet viewer: a network visualization tool for human brain connectomics. PloS One. 8 (7), e68910. https://doi.org/10.1371/journal.pone.0068910 (2013).
Google Scholar
Xu, J. et al. FC-NIRS: A Functional Connectivity Analysis Tool for Near-Infrared Spectroscopy Data. BioMed research international, 2015, 248724. (2015). https://doi.org/10.1155/2015/248724
Bassett, D. S. & Bullmore, E. T. Small-worldness brain networks revisited. The neuroscientist: a review journal bringing neurobiology. Neurol. Psychiatry. 23 (5), 499–516. https://doi.org/10.1177/1073858416667720 (2017).
Google Scholar
Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10 (3), 186–198. https://doi.org/10.1038/nrn2575 (2009).
Google Scholar