The speed dynamics of different sprint and acceleration exercises applied during football training

  • Dalen, T., Ingebrigtsen, J., Ettema, G., Hjelde, G. H. & Wisløff, U. Player load, acceleration, and deceleration during Forty-Five competitive matches of elite soccer. J. Strength. Cond Res. 30, 351–359 (2016).

    PubMed 

    Google Scholar 

  • Martín-García, A., Gómez Díaz, A., Bradley, P. S., Morera, F. & Casamichana, D. Quantification of a professional football team’s external load using a microcycle structure. J. Strength. Cond Res. 32, 3511–3518 (2018).

    PubMed 

    Google Scholar 

  • Silva, H., Nakamura, F. Y., Castellano, J. & Marcelino, R. Training load within a soccer microcycle week—A systematic review. Strength. Cond J. 45, 568–577 (2023).

    Google Scholar 

  • Borresen, J. & Lambert, M. I. The quantification of training load, the training response and the effect on performance. Sports Med. 39, 779–795 (2009).

    PubMed 

    Google Scholar 

  • Drew, M. K. & Finch, C. F. The relationship between training load and injury, illness and soreness: A systematic and literature review. Sports Med. 46, 861–883 (2016).

    PubMed 

    Google Scholar 

  • Banister, E. W. Modeling elite athletic performance. Physiological testing of the High–Performance. in Physiological Testing of the High-Performance Athlete (eds MacDougall, D., Wenger, H. A. & Green, H. J.) (Human Kinetics Books, Champaign, Illinois, (1991).

    Google Scholar 

  • Chiu, L. Z. F. & Barnes, J. L. The Fitness-Fatigue model revisited: implications for planning Short- and Long-Term training. Strength. Cond J. 25, 42–51 (2003).

    Google Scholar 

  • Diemer, W. M., Winters, M., Tol, J. L., Pas, H. I. M. F. L. & Moen, M. H. Incidence of acute hamstring injuries in Soccer: A systematic review of 13 studies involving more than 3800 athletes with 2 million sport exposure hours. J. Orthop. Sports Phys. Ther. 51, 27–36 (2021).

    PubMed 

    Google Scholar 

  • Ekstrand, J. et al. Hamstring injury rates have increased during recent seasons and now constitute 24% of all injuries in Men’s professional football: the UEFA elite club injury study from 2001/02 to 2021/22. Br. J. Sports Med. 57, 292–298 (2022).

    PubMed 

    Google Scholar 

  • Small, K., McNaughton, L. R., Greig, M., Lohkamp, M. & Lovell, R. Soccer fatigue, sprinting and hamstring injury risk. Int. J. Sports Med. 30, 573–578 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Kalema, R. N., Duhig, S. J., Williams, M. D., Donaldson, A. & Shield, A. J. Sprinting technique and hamstring strain injuries: A concept mapping study. J. Sci. Med. Sport. 25, 209–215 (2022).

    PubMed 

    Google Scholar 

  • Gómez-Piqueras, P. & Alcaraz, P. E. If you want to prevent hamstring injuries in soccer, run fast: A narrative review about practical considerations of sprint training. Sports (Basel) 12, (2024).

  • Malone, S., Roe, M., Doran, D. A., Gabbett, T. J. & Collins, K. High chronic training loads and exposure to bouts of maximal velocity running reduce injury risk in elite Gaelic football. J. Sci. Med. Sport. 20, 250–254 (2017).

    PubMed 

    Google Scholar 

  • Campos Vázquez, M. Á., Zubillaga, A., Toscano Bendala, F. J., Owen, A. L. & Castillo-Rodríguez, A. Quantification of high speed actions across a competitive microcycle in professional soccer. J Hum. Sport Exerc 18, (2021).

  • Kyprianou, E. et al. To measure peak velocity in soccer, let the players sprint. J. Strength. Cond Res. 36, 273–276 (2022).

    PubMed 

    Google Scholar 

  • Al Haddad, H., Simpson, B. M., Buchheit, M., Di Salvo, V. & Mendez-Villanueva, A. Peak match speed and maximal sprinting speed in young soccer players: effect of age and playing position. Int. J. Sports Physiol. Perform. 10, 888–896 (2015).

    PubMed 

    Google Scholar 

  • Silva, H. et al. Peak match sprinting speed during soccer matches: analysing the pre- and post-peak speed dynamics. Biol. Sport. https://doi.org/10.5114/biolsport.2024.136089 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haugen, T. A., Tønnessen, E. & Seiler, S. K. The difference is in the start: impact of timing and start procedure on sprint running performance. J. Strength. Cond Res. 26, 473–479 (2012).

    PubMed 

    Google Scholar 

  • Skoglund, A., Strand, M. F. & Haugen, T. A. The effect of flying sprints at 90–95% of maximal velocity on sprint performance. Int. J. Sports Physiol. Perform. 18, 248–254 (2023).

    PubMed 

    Google Scholar 

  • Haugen, T., Tonnessen, E., Leirstein, S., Hem, E. & Seiler, S. Not quite so fast: effect of training at 90% sprint speed on maximal and repeated-sprint ability in soccer players. J. Sports Sci. 32, 1979–1986 (2014).

    PubMed 

    Google Scholar 

  • Vescovi, J. D. Sprint speed characteristics of high-level American female soccer players: female athletes in motion (FAiM) study. J. Sci. Med. Sport. 15, 474–478 (2012).

    PubMed 

    Google Scholar 

  • Clemente, F. M. et al. Testing the peak running speed in analytical and contextual-based scenarios: applied research in young adult soccer players. J. Sports Sci. 41, 1372–1382 (2023).

    PubMed 

    Google Scholar 

  • McKay, A. K. A. et al. Defining training and performance caliber: A participant classification framework. Int. J. Sports Physiol. Perform. 17, 317–331 (2022).

    PubMed 

    Google Scholar 

  • Crang, Z. L. et al. The validity of Raw custom-processed global navigation satellite systems data during straight-line sprinting across multiple days. J. Sci. Med. Sport. 27, 204–210 (2024).

    PubMed 

    Google Scholar 

  • Cormier, P. et al. Concurrent validity and reliability of different technologies for Sprint-Derived horizontal Force-Velocity-Power profiling. J. Strength. Cond Res. 37, 1298–1305 (2023).

    PubMed 

    Google Scholar 

  • Silva, H. et al. Using minimum effort duration can compromise the analysis of acceleration and deceleration demands in football. Int. J. Perform. Anal. Sport. 23, 125–137 (2023).

    Google Scholar 

  • Hopkins, W. G., Marshall, S. W., Batterham, A. M. & Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 41, 3–13 (2009).

    PubMed 

    Google Scholar 

  • Faude, O., Koch, T. & Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 30, 625–631 (2012).

    PubMed 

    Google Scholar 

  • Martínez-Hernández, D., Quinn, M. & Jones, P. Linear advancing actions followed by deceleration and turn are the most common movements preceding goals in male professional soccer. Sci. Med. Footb. 7, 25–33 (2023).

    PubMed 

    Google Scholar 

  • Di Salvo, V., Gregson, W., Atkinson, G., Tordoff, P. & Drust, B. Analysis of high intensity activity in premier league soccer. Int. J. Sports Med. 30, 205–212 (2009).

    PubMed 

    Google Scholar 

  • Haugen, T., Seiler, S., Sandbakk, Ø. & Tønnessen, E. The training and development of elite sprint performance: an integration of scientific and best practice literature. Sports Med. Open. 5, 44 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Murphy, A. J., Lockie, R. G. & Coutts, A. J. Kinematic determinants of early acceleration in field sport athletes. J. Sports Sci. Med. 2, 144–150 (2003).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hunter, J. P., Marshall, R. N. & McNair, P. Reliability of Biomechanical variables of sprint running. Med. Sci. Sports Exerc. 36, 850–861 (2004).

    PubMed 

    Google Scholar 

  • Mann, R. & Herman, J. Kinematic analysis of olympic sprint performance: Men’s 200 meters. Int. J. Sport Biomech. 1, 151–162 (1985).

    Google Scholar 

  • Sonderegger, K., Tschopp, M. & Taube, W. The challenge of evaluating the intensity of short actions in Soccer: A new methodological approach using percentage acceleration. PLoS One. 11, e0166534 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Young, W. B. et al. Gradual vs. maximal acceleration: their influence on the prescription of maximal speed sprinting in team sport athletes. Sports (Basel) 6, (2018).

  • Jeffreys, I. & Goodwin, J. E. Developing speed and agility for sports performance. in Strength and Conditioning for Sports Performance (eds. Jeffreys, I. & Moody, J.) 31Routledge, London, England, (2016).

  • Higashihara, A., Ono, T., Kubota, J., Okuwaki, T. & Fukubayashi, T. Functional differences in the activity of the hamstring muscles with increasing running speed. J. Sports Sci. 28, 1085–1092 (2010).

    PubMed 

    Google Scholar 

  • Willer, J., Allen, S. J., Burden, R. J. & Folland, J. P. How humans run faster: the neuromechanical contributions of functional muscle groups to running at different speeds. Scand. J. Med. Sci. Sports. 34, e14690 (2024).

    PubMed 

    Google Scholar 

  • Mendiguchia, J. et al. A multifactorial, Criteria-based progressive algorithm for hamstring injury treatment. Med. Sci. Sports Exerc. 49, 1482–1492 (2017).

    PubMed 

    Google Scholar 

  • Continue Reading