Targeted isolation of H2-dependent methylotrophic methanogens by a cocktail approach

  • Lyu, Z., Shao, N., Akinyemi, T. & Whitman, W. B. Methanogenesis. Curr. Biol. 28, R727–R732 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Zhou, Z. et al. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species. Nature 601, 257–262 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. & Whitman, W. B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N. Y. Acad. Sci. 1125, 171–189 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Mayumi, D. et al. Methane production from coal by a single methanogen. Science 354, 222–225 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Thauer, R. K., Kaster, A.-K., Seedorf, H., Buckel, W. & Hedderich, R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Söllinger, A. & Urich, T. Methylotrophic methanogens everywhere—physiology and ecology of novel players in global methane cycling. Biochem. Soc. Trans. 47, 1895–1907 (2019).

    PubMed 

    Google Scholar 

  • Sprenger, W. W., van Belzen, M. C., Rosenberg, J., Hackstein, J. H. & Keltjens, J. T. Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int. J. Syst. Evol. Microbiol. 50, 1989–1999 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Dridi, B., Fardeau, M.-L., Ollivier, B., Raoult, D. & Drancourt, M. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int. J. Syst. Evol. Microbiol. 62, 1902–1907 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Sorokin, D. Y. et al. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat. Microbiol. 2, 17081 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Söllinger, A. et al. Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences. FEMS Microbiol. Ecol. 92, fiv149 (2016).

    PubMed 

    Google Scholar 

  • Borrel, G. et al. Genomics and metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome. ISME J. 11, 2059–2074 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sorokin, D. Y., Merkel, A. Y. & Abbas, B. Ecology of Methanonatronarchaeia. Environ. Microbiol. 24, 5217–5229 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nobu, M. K., Narihiro, T., Kuroda, K., Mei, R. & Liu, W.-T. Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J. 10, 2478–2487 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. A methylotrophic origin of methanogenesis and early divergence of anaerobic multicarbon alkane metabolism. Sci. Adv. 7, eabj1453 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evans, P. N. et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350, 434–438 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • McKay, L. J. et al. Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nat. Microbiol. 4, 614–622 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Vanwonterghem, I. et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat. Microbiol. 1, 16170 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Ou, Y.-F. et al. Expanding the phylogenetic distribution of cytochrome b-containing methanogenic archaea sheds light on the evolution of methanogenesis. ISME J. 16, 2373–2387 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borrel, G. et al. Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol. Evol. 5, 1769–1780 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borrel, G. et al. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat. Microbiol. 4, 603–613 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hou, J. et al. Taxonomic and carbon metabolic diversification of Bathyarchaeia during its coevolution history with early Earth surface environment. Sci. Adv. 9, eadf5069 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y.-F. et al. Anaerobic degradation of paraffins by thermophilic Actinobacteria under methanogenic conditions. Environ. Sci. Technol. 54, 10610–10620 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, C., Li, L., Wang, Y., Dong, X. & Zhao, F.-J. Methylotrophic methanogens and bacteria synergistically demethylate dimethylarsenate in paddy soil and alleviate rice straighthead disease. ISME J. 17, 1851–1861 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, C.-J., Pan, J., Liu, Y., Duan, C.-H. & Li, M. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. Microbiome 8, 94 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, T. L. & Wolin, M. J. Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 141, 116–122 (1985).

    CAS 
    PubMed 

    Google Scholar 

  • Hanišáková, N., Vítězová, M. & Rittmann, S. K.-M. The historical development of cultivation techniques for methanogens and other strict anaerobes and their application in modern microbiology. Microorganisms 10, 412 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Borrel, G. et al. Methanomethylophilus alvi gen. nov., sp. nov., a novel hydrogenotrophic methyl-reducing methanogenic archaea of the order Methanomassiliicoccales isolated from the human gut and proposal of the novel family Methanomethylophilaceae fam. nov. Microorganisms 11, 2794 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoedt, E. C. et al. Culture-and metagenomics-enabled analyses of the Methanosphaera genus reveals their monophyletic origin and differentiation according to genome size. ISME J. 12, 2942–2953 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Eloe-Fadrosh, E. A., Ivanova, N. N., Woyke, T. & Kyrpides, N. C. Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. Nat. Microbiol. 1, 15032 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Pace Norman, R. Mapping the tree of life: progress and prospects. Microbiol. Mol. Biol. Rev. 73, 565–576 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, K. et al. Isolation of a methyl-reducing methanogen outside the Euryarchaeota. Nature 632, 1124–1130 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Bräuer, S. L., Cadillo-Quiroz, H., Yashiro, E., Yavitt, J. B. & Zinder, S. H. Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442, 192–194 (2006).

    PubMed 

    Google Scholar 

  • Lewis, W. H., Tahon, G., Geesink, P., Sousa, D. Z. & Ettema, T. J. G. Innovations to culturing the uncultured microbial majority. Nat. Rev. Microbiol. 19, 225–240 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Berdy, B., Spoering, A. L., Ling, L. L. & Epstein, S. S. In situ cultivation of previously uncultivable microorganisms using the ichip. Nat. Protoc. 12, 2232–2242 (2017).

    PubMed 

    Google Scholar 

  • Ma, L. et al. Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project’s Most Wanted taxa. Proc. Natl Acad. Sci. USA 111, 9768–9773 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cross, K. L. et al. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nat. Biotechnol. 37, 1314–1321 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wolfe, R. S. In Methods in Enzymology, Vol. 494 (eds Rosenzweig, A. C. & Ragsdale, S. W.) 1–22 (Academic Press, 2011).

  • Cheng, L. et al. Methermicoccus shengliensis gen. nov., sp. nov., a thermophilic, methylotrophic methanogen isolated from oil-production water, and proposal of Methermicoccaceae fam. nov. Int. J. Syst. Evol. Microbiol. 57, 2964–2969 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Kurth, J. M., Op den Camp, H. J. M. & Welte, C. U. Several ways one goal—methanogenesis from unconventional substrates. Appl. Microbiol. Biotechnol. 104, 6839–6854 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ye, J. et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma. 13, 134 (2012).

    CAS 

    Google Scholar 

  • Cheng, L. et al. Isolation and characterization of Methanoculleus receptaculi sp. nov. from Shengli oil field, China. FEMS Microbiol. Lett. 285, 65–71 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Feldewert, C., Lang, K. & Brune, A. The hydrogen threshold of obligately methyl-reducing methanogens. FEMS Microbiol. Lett. 367, fnaa137 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wolin, E. A., Wolin, M. J. & Wolfe, R. S. Formation of methane by bacterial extracts. J. Biol. Chem. 238, 2882–2886 (1963).

    CAS 
    PubMed 

    Google Scholar 

  • Wu, K. et al. Gudongella oleilytica gen. nov., sp. nov., an aerotorelant bacterium isolated from Shengli oilfield and validation of family Tissierellaceae. Int. J. Syst. Evol. Microbiol. 70, 951–957 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Peng, J., Lü, Z., Rui, J. & Lu, Y. Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil. Appl. Environ. Microbiol. 74, 2894–2901 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading