Van de Peer, Y., Mizrachi, E. & Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424 (2017).
Google Scholar
Jiao, Y. et al. Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97–100 (2011).
Google Scholar
Cheng, F. et al. Gene retention, fractionation and subgenome differences in polyploid plants. Nat. Plants 4, 258–268 (2018).
Google Scholar
Zhang, R. G. et al. Subgenome-aware analyses suggest a reticulate allopolyploidization origin in three Papaver genomes. Nat. Commun. 14, 2204 (2023).
Google Scholar
Zhang, R. G., Shang, H., Jia, K. & Ma, Y. Subgenome phasing for complex allopolyploidy: case-based benchmarking and recommendations. Brief. Bioinform. 25, bbad513 (2024).
Google Scholar
Stull, G. W., Pham, K. K., Soltis, P. S. & Soltis, D. E. Deep reticulation: the long legacy of hybridization in vascular plant evolution. Plant J. 114, 743–766 (2023).
Google Scholar
Bapteste, E. et al. Networks: expanding evolutionary thinking. Trends Genet. 29, 439–441 (2013).
Google Scholar
Ma, P. F. et al. Genome assemblies of 11 bamboo species highlight diversification induced by dynamic subgenome dominance. Nat. Genet. 56, 710–720 (2024).
Google Scholar
Fawcett, J. A., Maere, S. & van de Peer, Y. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc. Natl. Acad. Sci. USA 106, 5737–5742 (2009).
Google Scholar
Zhang, L. et al. The ancient wave of polyploidization events in flowering plants and their facilitated adaptation to environmental stress. Plant Cell Environ. 43, 2847–2856 (2020).
Google Scholar
Ebadi, M. et al. The duplication of genomes and genetic networks and its potential for evolutionary adaptation and survival during environmental turmoil. Proc. Natl. Acad. Sci. USA 120, e2307289120 (2023).
Google Scholar
Román-Palacios, C., Molina-Henao, Y. F. & Barker, M. S. Polyploids increase overall diversity despite higher turnover than diploids in the Brassicaceae. Proc. Biol. Sci. 287, 20200962 (2020).
Google Scholar
Schranz, M. E., Mohammadin, S. & Edger, P. P. Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model. Curr. Opin. Plant Biol. 15, 147–153 (2012).
Google Scholar
Tank, D. C. et al. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytol. 207, 454–467 (2015).
Google Scholar
Heslop-Harrison, J. S. P., Schwarzacher, T. & Liu, Q. Polyploidy: its consequences and enabling role in plant diversification and evolution. Ann. Bot. 131, 1–10 (2023).
Google Scholar
Soltis, P. S. & Soltis, D. E. Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Plant Biol. 30, 159–165 (2016).
Google Scholar
Scarpino, S. V., Levin, D. A. & Meyers, L. A. Polyploid formation shapes flowering plant diversity. Am. Nat. 184, 456–465 (2014).
Google Scholar
Mayrose, I. et al. Recently formed polyploid plants diversify at lower rates. Science 333, 1257 (2011).
Google Scholar
Arrigo, N. & Barker, M. S. Rarely successful polyploids and their legacy in plant genomes. Curr. Opin. Plant Biol. 15, 140–146 (2012).
Google Scholar
Vamosi, J. C., Magallon, S., Mayrose, I., Otto, S. P. & Sauquet, H. Macroevolutionary patterns of flowering plant speciation and extinction. Annu. Rev. Plant Biol. 69, 685–706 (2018).
Google Scholar
Dodsworth, S., Chase, M. W. & Leitch, A. R. Is post-polyploidization diploidization the key to the evolutionary success of angiosperms? Bot. J. Linn. Soc. 180, 1–5 (2016).
Mandáková, T. & Lysak, M. A. Post-polyploid diploidization and diversification through dysploid changes. Curr. Opin. Plant Biol. 42, 55–65 (2018).
Google Scholar
Alverson, W. S., Whitlock, B. A., Nyffeler, R., Bayer, C. & Baum, D. A. Phylogeny of the core Malvales: evidence from ndhF sequence data. Am. J. Bot. 86, 1474–1486 (1999).
Google Scholar
Bayer, C. et al. Support for an expanded family concept of Malvaceae within a recircumscribed order Malvales: a combined analysis of plastid atpB and rbcL DNA sequences. Bot. J. Linn. Soc. 129, 267–303 (1999).
Baum, D. A., Alverson, W. S. & Nyffeler, R. A durian by any other name: taxonomy and nomenclature of the core Malvales. Harv. Pap. Bot. 3, 315–330 (1998).
Baum, D. A. et al. Phylogenetic relationships of Malvatheca (Bombacoideae and Malvoideae; Malvaceae sensu lato) as inferred from plastid DNA sequences. Am. J. Bot. 91, 1863–1871 (2004).
Google Scholar
Cvetkovic, T. et al. Phylogenomics resolves deep subfamilial relationships in Malvaceae s.l. Genes Genomes Genet. 11, jkab136 (2021).
Google Scholar
Hernández-Gutiérrez, R., Mendoza, C. G. & Magallón, S. Low-copy nuclear genes reveal new evidence of incongruence in relationships within Malvaceae s.l. Syst. Bot. 46, 1042–1052 (2021).
Hernández-Gutiérrez, R. et al. Localized phylogenetic discordance among nuclear loci due to incomplete lineage sorting and introgression in the family of cotton and cacao (Malvaceae). Front. Plant Sci. 13, 850521 (2022).
Google Scholar
Hernández-Gutiérrez, R. & Magallón, S. The timing of Malvales evolution: Incorporating its extensive fossil record to inform about lineage diversification. Mol. Phylogenet. Evol. 140, 106606 (2019).
Google Scholar
Nyffeler, R. et al. Phylogenetic analysis of the Malvadendrina clade (Malvaceae s.l.) based on plastid DNA sequences. Org. Divers. Evol. 5, 109–123 (2005).
Wang, J., Moore, M. J., Wang, H., Zhu, Z. & Wang, H. Plastome evolution and phylogenetic relationships among Malvaceae subfamilies. Gene 765, 145103 (2021).
Google Scholar
Conover, J. L. et al. A Malvaceae mystery: a mallow maelstrom of genome multiplications and maybe misleading methods? J. Integr. Plant Biol. 61, 12–31 (2019).
Google Scholar
Paterson, A. H. et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492, 423–427 (2012).
Google Scholar
Wang, X. et al. Comparative genomic de-convolution of the cotton genome revealed a decaploid ancestor and widespread chromosomal fractionation. New Phytol. 209, 1252–1263 (2016).
Google Scholar
Teh, B. T. et al. The draft genome of tropical fruit durian (Durio zibethinus). Nat. Genet. 49, 1633–1641 (2017).
Google Scholar
Wang, J. et al. Recursive paleohexaploidization shapes the durian genome. Plant Physiol. 179, 209–219 (2019).
Google Scholar
Sun, P. et al. Subgenome-aware analyses reveal the genomic consequences of ancient allopolyploid hybridizations throughout the cotton family. Proc. Natl. Acad. Sci. USA 121, e2313921121 (2024).
Google Scholar
Mapleson, D., Garcia Accinelli, G., Kettleborough, G., Wright, J. & Clavijo, B. J. KAT: a K-mer analysis toolkit to quality control NGS datasets and genome assemblies. Bioinformatics 33, 574–576 (2016).
Google Scholar
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210 (2015).
Google Scholar
Liu, D., Tian, X., Shao, S., Ma, Y. & Zhang, R. Haplotype-resolved chromosomal-level genome assembly of Buzhaye (Microcos paniculata). Sci. Data 10, 901 (2023).
Google Scholar
Motamayor, J. C. et al. The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biol. 14, r53 (2013).
Google Scholar
Yang, J., Zhang, R., Ma, Y., Ma, Y. & Sun, W. Genome assembly of Firmina major, an endangered savanna tree species endemic to China. https://doi.org/10.1101/2024.09.09.610897 (2024).
Sahu, S. K. et al. Chromosome-scale genomes of commercial timber trees (Ochroma pyramidale, Mesua ferrea, and Tectona grandis). Sci. Data 10, 512 (2023).
Google Scholar
Yuan, G. et al. A telomere-to-telomere reference genome assembly of the red silk cotton tree (Bombax ceiba). Sci. Data 12, 1250 (2025).
Google Scholar
Zhang, R. G. et al. SOI: robust identification of orthologous synteny with the Orthology Index and broad applications in evolutionary genomics. Nucleic Acids Res. 53, gkaf320 (2025).
Google Scholar
Argout, X. et al. The genome of Theobroma cacao. Nat. Genet. 43, 101–108 (2011).
Google Scholar
Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007).
Google Scholar
Shao, L. et al. High-quality genomes of Bombax ceiba and Ceiba pentandra provide insights into the evolution of Malvaceae species and differences in their natural fiber development. Plant Commun. 5, 100832 (2024).
Google Scholar
Marcussen, T. et al. Ancient hybridizations among the ancestral genomes of bread wheat. Science 345, 1250092 (2014).
Google Scholar
He, Q. et al. High-quality genome of allotetraploid Avena barbata provides insights into the origin and evolution of B subgenome in Avena. J. Integr. Plant Biol. 67, 1515–1532 (2025).
Guo, X. et al. Linked by ancestral bonds: multiple whole-genome duplications and reticulate evolution in a Brassicaceae tribe. Mol. Biol. Evol. 38, 1695–1714 (2021).
Google Scholar
Jang, T. et al. Multiple origins and nested cycles of hybridization result in high tetraploid diversity in the monocot Prospero. Front. Plant Sci. 9, 433 (2018).
Google Scholar
Steenwyk, J. L., Li, Y., Zhou, X., Shen, X. & Rokas, A. Incongruence in the phylogenomics era. Nat. Rev. Genet. 24, 834–850 (2023).
Google Scholar
Nyffeler, R. & Baum, D. A. Phylogenetic relationships of the durians (Bombacaceae-Durioneae or /Malvaceae/Helicteroideae/Durioneae) based on chloroplast and nuclear ribosomal DNA sequences. Plant Syst. Evol. 224, 55–82 (2000).
Google Scholar
Degnan, J. & Rosenberg, N. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24, 332–340 (2009).
Google Scholar
Sun, P. et al. WGDI: A user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes. Mol. Plant 15, 1841–1851 (2022).
Google Scholar
Sun, P. et al. Whole-genome-based paloegenomics reveals angiosperm karyotype evolution during their early history. https://doi.org/10.2139/ssrn.4482425 (2023).
Udall, J. A. et al. The genome sequence of Gossypioides kirkii illustrates a descending dysploidy in plants. Front. Plant Sci. 10, 1541 (2019).
Google Scholar
Wang, M. et al. Genomic innovation and regulatory rewiring during evolution of the cotton genus Gossypium. Nat. Genet. 54, 1959–1971 (2022).
Google Scholar
Marinho, R. C. et al. Do chromosome numbers reflect phylogeny? New counts for Bombacoideae and a review of Malvaceae s.l. Am. J. Bot. 101, 1456–1465 (2014).
Google Scholar
Feng, X. et al. Genomic evidence for rediploidization and adaptive evolution following the whole-genome triplication. Nat. Commun. 15, 1635 (2024).
Google Scholar
Wang, J. et al. Deciphering recursive polyploidization in Lamiales and reconstructing their chromosome evolutionary trajectories. Plant Physiol. 195, kiae151 (2024).
Zhang, T. et al. Cultivated hawthorn (Crataegus pinnatifida var. major) genome sheds light on the evolution of Maleae (apple tribe). J. Integr. Plant Biol. 64, 1487–1501 (2022).
Google Scholar
Ding, Y. M. et al. Genome structure-based Juglandaceae phylogenies contradict alignment-based phylogenies and substitution rates vary with DNA repair genes. Nat. Commun. 14, 617 (2023).
Google Scholar
Lanfear, R. et al. Taller plants have lower rates of molecular evolution. Nat. Commun. 4, 1879 (2013).
Google Scholar
Cheng, F. et al. Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLoS ONE 7, e36442 (2012).
Google Scholar
Brownfield, L. & Kohler, C. Unreduced gamete formation in plants: mechanisms and prospects. J. Exp. Bot. 62, 1659–1668 (2011).
Google Scholar
Garsmeur, O. et al. Two evolutionarily distinct classes of paleopolyploidy. Mol. Biol. Evol. 31, 448–454 (2014).
Google Scholar
Li, Z. et al. Gene duplicability of core genes is highly consistent across all angiosperms. Plant Cell 28, 326–344 (2016).
Google Scholar
Jiang, W., Liu, Y., Xia, E. & Gao, L. Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants. Plant Physiol. 161, 1844–1861 (2013).
Google Scholar
Chen, H., Almeida-Silva, F., Logghe, G., Bonte, D. & Van de Peer, Y. The rise of polyploids during environmental catastrophes. https://doi.org/10.1101/2024.11.22.624806 (2024).
Soltis, D. E., Buggs, R. J. A., Doyle, J. J. & Soltis, P. S. What we still don’t know about polyploidy. Taxon 59, 1387–1403 (2010).
Comai, L. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6, 836–846 (2005).
Google Scholar
Li, Z. et al. Patterns and processes of diploidization in land plants. Annu. Rev. Plant Biol. 72, 387–410 (2021).
Google Scholar
Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).
Ramsey, J. & Schemske, D. W. Neopolyploidy in flowering plants. Annu. Rev. Ecol. Syst. 33, 589–639 (2002).
Rieseberg, L. H. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 16, 351–358 (2001).
Google Scholar
Bowers, J. E. & Paterson, A. H. Chromosome number is key to longevity of polyploid lineages. New Phytol. 231, 19–28 (2021).
Google Scholar
Carta, A. & Escudero, M. Karyotypic diversity: a neglected trait to explain angiosperm diversification? Evolution 77, 1158–1164 (2023).
Google Scholar
Albalat, R. & Cañestro, C. Evolution by gene loss. Nat. Rev. Genet. 17, 379–391 (2016).
Google Scholar
Xiong, Z., Gaeta, R. T. & Pires, J. C. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc. Natl. Acad. Sci. USA 108, 7908–7913 (2011).
Google Scholar
Chester, M. et al. Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc. Natl. Acad. Sci. USA 109, 1176–1181 (2012).
Google Scholar
Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure from small quantity of fresh leaf material. Phytochem. Bull. 119, 11–15 (1987).
van Berkum, N. L. et al. Hi-C: a method to study the three-dimensional architecture of genomes. J. Vis. Exp. 39, e1869 (2010).
Kokot, M., Długosz, M. & Deorowicz, S. KMC 3: counting and manipulating k-mer statistics. Bioinformatics 33, 2759–2761 (2017).
Google Scholar
Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432 (2020).
Google Scholar
Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).
Google Scholar
Cheng, H. et al. Haplotype-resolved assembly of diploid genomes without parental data. Nat. Biotechnol. 40, 1332–1335 (2022).
Google Scholar
Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-eesolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).
Google Scholar
Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92 (2017).
Google Scholar
Durand, N. C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101 (2016).
Google Scholar
Xu, G. et al. LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly. Gigascience 8, giy157 (2019).
Google Scholar
Adams, S. P. et al. Loss and recovery of Arabidopsis–type telomere repeat sequences 5′–(TTTAGGG)n–3′ in the evolution of a major radiation of flowering plants. Proc. R. Soc. B. 268, 1541–1546 (2001).
Google Scholar
Jin, J. et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241 (2020).
Google Scholar
Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352 (2015).
Google Scholar
Hu, J. et al. NextPolish2: a repeat-aware polishing tool for genomes assembled using HiFi long reads. Genom. Proteom. Bioinform. 22, qzad009 (2024).
Pryszcz, L. P. & Toni, G. Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic Acids Res. 44, e113 (2016).
Google Scholar
Ou, S. et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20, 275 (2019).
Google Scholar
Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinform. 25, 4–10 (2009).
Zhang, L. et al. Reference genomes of the two cultivated jute species. Plant Biotechnol. J. 19, 2235–2248 (2021).
Google Scholar
He, Z. et al. Evolution of coastal forests based on a full set of mangrove genomes. Nat. Ecol. Evol. 6, 738–749 (2022).
Google Scholar
Gao, Y. et al. De novo genome assembly of the red silk cotton tree (Bombax ceiba). Gigascience 7, giy051 (2018).
Google Scholar
Wang, S. et al. The chromosome-scale genomes of Dipterocarpus turbinatus and Hopea hainanensis (Dipterocarpaceae) provide insights into fragrant oleoresin biosynthesis and hardwood formation. Plant Biotechnol. J. 20, 538–553 (2022).
Google Scholar
Ding, X. et al. Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family. Gigascience 9, giaa013 (2020).
Google Scholar
Cheng, C. Y. et al. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 89, 789–804 (2017).
Google Scholar
Yue, J. et al. SunUp and Sunset genomes revealed impact of particle bombardment mediated transformation and domestication history in papaya. Nat. Genet. 54, 715–724 (2022).
Google Scholar
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
Google Scholar
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).
Google Scholar
Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).
Google Scholar
Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinform. 12, 491 (2011).
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).
Google Scholar
Zhang, R. G. et al. TEsorter: an accurate and fast method to classify LTR-retrotransposons in plant genomes. Hortic. Res. 9, uhac017 (2022).
Google Scholar
Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).
Google Scholar
Nawrocki, E. P. et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 43, D130–D137 (2015).
Google Scholar
Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).
Google Scholar
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
Google Scholar
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
Google Scholar
Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).
Google Scholar
Zhang, C. & Mirarab, S. ASTRAL-Pro 2: ultrafast species tree reconstruction from multi-copy gene family trees. Bioinformatics 38, 4949–4950 (2022).
Google Scholar
Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).
Google Scholar
Standley, D. M. & Katoh, K. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
Google Scholar
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).
Google Scholar
Wang, Z. et al. A high-quality Buxus austro-yunnanensis (Buxales) genome provides new insights into karyotype evolution in early eudicots. BMC Biol. 20, 216 (2022).
Google Scholar
Jia, K. et al. SubPhaser: a robust allopolyploid subgenome phasing method based on subgenome-specific k-mers. New Phytol. 235, 801–809 (2022).
Google Scholar
Zhang, C., Mirarab, S. & Takahashi, A. Weighting by gene tree uncertainty improves accuracy of quartet-based species trees. Mol. Biol. Evol. 39, msac215 (2022).
Google Scholar
Zhang, C., Nielsen, R. & Mirarab, S. CASTER: Direct species tree inference from whole-genome alignments. Science 387, eadk9688 (2025).
Google Scholar
Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2005).
Google Scholar
Kvacek, Z., Manchester, S. R. & Akhmetiev, M. A. Review of the fossil history of Craigia (Malvaceae s.l.) in the Northern Hemisphere based on fruits and co-occurring folliage. Trans. Int. Palaeobot. Conf. 114–140 (2005).
Ferguson, D. K., Liu, Y. S. & Zetter, R. The paleoendemic plants of East Asia: evidence from the fossil record for changing distribution patterns. In: (ed Jablonski, N. G.). The Changing Face of East Asia during the Tertiary and Quaternary. (Centre of Asian Studies, The University of Hong Kong, 1997) pp 359–371.
Carvalho, M. R., Herrera, F. A., Jaramillo, C. A., Wing, S. L. & Callejas, R. Paleocene Malvaceae from northern South America and their biogeographical implications. Am. J. Bot. 98, 1337–1355 (2011).
Google Scholar
Kumar, S. et al. TimeTree 5: an expanded resource for species divergence times. Mol. Biol. Evol. 39, msac174 (2022).
Google Scholar
Sanderson, M. J. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301–302 (2003).
Google Scholar
Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
Google Scholar
Claramunt, S. CladeDate: Calibration information generator for divergence time estimation. Methods Ecol. Evol. 13, 2331–2338 (2022).
Silvestro, D. et al. Fossil data support a pre-Cretaceous origin of flowering plants. Nat. Ecol. Evol. 5, 449–457 (2021).
Google Scholar
Shang, H. et al. Phytop: A tool for visualizing and recognizing signals of incomplete lineage sorting and hybridization using species trees output from ASTRAL. Hortic. Res. 12, uhae330 (2025).
Google Scholar
Tian, Z. et al. Thirteen Dipterocarpoideae genomes provide insights into their evolution and borneol biosynthesis. Plant Commun. 3, 100464 (2022).
Google Scholar
Solís-Lemus, C. & Ané, C. Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLoS Genet. 12, e1005896 (2016).
Google Scholar
Solís-Lemus, C., Bastide, P. & Ané, C. PhyloNetworks: a package for phylogenetic networks. Mol. Biol. Evol. 34, 3292–3298 (2017).
Google Scholar
Cai, R. & Ané, C. Assessing the fit of the multi-species network coalescent to multi-locus data. Bioinformatics 37, 634–641 (2021).
Google Scholar
Pang, X. & Zhang, D. Detection of ghost introgression requires exploiting topological and branch length information. Syst. Biol. 73, syad077 (2024).
Flouri, T., Jiao, X., Rannala, B. & Yang, Z. A Bayesian implementation of the multispecies coalescent model with introgression for phylogenomic analysis. Mol. Biol. Evol. 37, 1211–1223 (2020).
Google Scholar
Rannala, B. & Yang, Z. Efficient Bayesian species tree inference under the multispecies coalescent. Syst. Biol. 66, 823–842 (2017).
Google Scholar
Flouri, T. et al. Bayesian phylogenetic inference using relaxed-clocks and the multispecies coalescent. Mol. Biol. Evol. 39, msac161 (2022).
Google Scholar
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
Google Scholar
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).
Google Scholar
Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667 (2016).
Google Scholar
Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 11, R14 (2010).
Google Scholar
Kindt, R. WorldFlora: An R package for exact and fuzzy matching of plant names against the World Flora Online taxonomic backbone data. Appl. Plant Sci. 8, e11388 (2020).
Google Scholar
Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).
Google Scholar
Delgado-Paredes, G. E. et al. In situ germplasm conservation of Gossypium raimondii Ulbricht (“Algodoncillo”) in the Lambayeque region (Peru). Pak. J. Bot. 53, 2135–2142 (2021).
Idowu, B. F. & Samuel, O. A. Cacao growth and development under different nursery and field conditions. In: (ed Peter, O. A.). Theobroma Cacao—Deploying Science for Sustainability of Global Cocoa Economy. pp 1–19 (IntechOpen, Rijeka, 2019).
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
Google Scholar