Reticulate allopolyploidy and subsequent dysploidy drive evolution and diversification in the cotton family

  • Van de Peer, Y., Mizrachi, E. & Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 18, 411–424 (2017).

    PubMed 

    Google Scholar 

  • Jiao, Y. et al. Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97–100 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cheng, F. et al. Gene retention, fractionation and subgenome differences in polyploid plants. Nat. Plants 4, 258–268 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, R. G. et al. Subgenome-aware analyses suggest a reticulate allopolyploidization origin in three Papaver genomes. Nat. Commun. 14, 2204 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, R. G., Shang, H., Jia, K. & Ma, Y. Subgenome phasing for complex allopolyploidy: case-based benchmarking and recommendations. Brief. Bioinform. 25, bbad513 (2024).

    PubMed Central 

    Google Scholar 

  • Stull, G. W., Pham, K. K., Soltis, P. S. & Soltis, D. E. Deep reticulation: the long legacy of hybridization in vascular plant evolution. Plant J. 114, 743–766 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Bapteste, E. et al. Networks: expanding evolutionary thinking. Trends Genet. 29, 439–441 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Ma, P. F. et al. Genome assemblies of 11 bamboo species highlight diversification induced by dynamic subgenome dominance. Nat. Genet. 56, 710–720 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fawcett, J. A., Maere, S. & van de Peer, Y. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc. Natl. Acad. Sci. USA 106, 5737–5742 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, L. et al. The ancient wave of polyploidization events in flowering plants and their facilitated adaptation to environmental stress. Plant Cell Environ. 43, 2847–2856 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Ebadi, M. et al. The duplication of genomes and genetic networks and its potential for evolutionary adaptation and survival during environmental turmoil. Proc. Natl. Acad. Sci. USA 120, e2307289120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Román-Palacios, C., Molina-Henao, Y. F. & Barker, M. S. Polyploids increase overall diversity despite higher turnover than diploids in the Brassicaceae. Proc. Biol. Sci. 287, 20200962 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schranz, M. E., Mohammadin, S. & Edger, P. P. Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model. Curr. Opin. Plant Biol. 15, 147–153 (2012).

    PubMed 

    Google Scholar 

  • Tank, D. C. et al. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytol. 207, 454–467 (2015).

    PubMed 

    Google Scholar 

  • Heslop-Harrison, J. S. P., Schwarzacher, T. & Liu, Q. Polyploidy: its consequences and enabling role in plant diversification and evolution. Ann. Bot. 131, 1–10 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Soltis, P. S. & Soltis, D. E. Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Plant Biol. 30, 159–165 (2016).

    PubMed 

    Google Scholar 

  • Scarpino, S. V., Levin, D. A. & Meyers, L. A. Polyploid formation shapes flowering plant diversity. Am. Nat. 184, 456–465 (2014).

    PubMed 

    Google Scholar 

  • Mayrose, I. et al. Recently formed polyploid plants diversify at lower rates. Science 333, 1257 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Arrigo, N. & Barker, M. S. Rarely successful polyploids and their legacy in plant genomes. Curr. Opin. Plant Biol. 15, 140–146 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Vamosi, J. C., Magallon, S., Mayrose, I., Otto, S. P. & Sauquet, H. Macroevolutionary patterns of flowering plant speciation and extinction. Annu. Rev. Plant Biol. 69, 685–706 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Dodsworth, S., Chase, M. W. & Leitch, A. R. Is post-polyploidization diploidization the key to the evolutionary success of angiosperms? Bot. J. Linn. Soc. 180, 1–5 (2016).

    Google Scholar 

  • Mandáková, T. & Lysak, M. A. Post-polyploid diploidization and diversification through dysploid changes. Curr. Opin. Plant Biol. 42, 55–65 (2018).

    PubMed 

    Google Scholar 

  • Alverson, W. S., Whitlock, B. A., Nyffeler, R., Bayer, C. & Baum, D. A. Phylogeny of the core Malvales: evidence from ndhF sequence data. Am. J. Bot. 86, 1474–1486 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Bayer, C. et al. Support for an expanded family concept of Malvaceae within a recircumscribed order Malvales: a combined analysis of plastid atpB and rbcL DNA sequences. Bot. J. Linn. Soc. 129, 267–303 (1999).

    Google Scholar 

  • Baum, D. A., Alverson, W. S. & Nyffeler, R. A durian by any other name: taxonomy and nomenclature of the core Malvales. Harv. Pap. Bot. 3, 315–330 (1998).

    Google Scholar 

  • Baum, D. A. et al. Phylogenetic relationships of Malvatheca (Bombacoideae and Malvoideae; Malvaceae sensu lato) as inferred from plastid DNA sequences. Am. J. Bot. 91, 1863–1871 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Cvetkovic, T. et al. Phylogenomics resolves deep subfamilial relationships in Malvaceae s.l. Genes Genomes Genet. 11, jkab136 (2021).

    CAS 

    Google Scholar 

  • Hernández-Gutiérrez, R., Mendoza, C. G. & Magallón, S. Low-copy nuclear genes reveal new evidence of incongruence in relationships within Malvaceae s.l. Syst. Bot. 46, 1042–1052 (2021).

    Google Scholar 

  • Hernández-Gutiérrez, R. et al. Localized phylogenetic discordance among nuclear loci due to incomplete lineage sorting and introgression in the family of cotton and cacao (Malvaceae). Front. Plant Sci. 13, 850521 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hernández-Gutiérrez, R. & Magallón, S. The timing of Malvales evolution: Incorporating its extensive fossil record to inform about lineage diversification. Mol. Phylogenet. Evol. 140, 106606 (2019).

    PubMed 

    Google Scholar 

  • Nyffeler, R. et al. Phylogenetic analysis of the Malvadendrina clade (Malvaceae s.l.) based on plastid DNA sequences. Org. Divers. Evol. 5, 109–123 (2005).

    Google Scholar 

  • Wang, J., Moore, M. J., Wang, H., Zhu, Z. & Wang, H. Plastome evolution and phylogenetic relationships among Malvaceae subfamilies. Gene 765, 145103 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Conover, J. L. et al. A Malvaceae mystery: a mallow maelstrom of genome multiplications and maybe misleading methods? J. Integr. Plant Biol. 61, 12–31 (2019).

    PubMed 

    Google Scholar 

  • Paterson, A. H. et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492, 423–427 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. et al. Comparative genomic de-convolution of the cotton genome revealed a decaploid ancestor and widespread chromosomal fractionation. New Phytol. 209, 1252–1263 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Teh, B. T. et al. The draft genome of tropical fruit durian (Durio zibethinus). Nat. Genet. 49, 1633–1641 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, J. et al. Recursive paleohexaploidization shapes the durian genome. Plant Physiol. 179, 209–219 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Sun, P. et al. Subgenome-aware analyses reveal the genomic consequences of ancient allopolyploid hybridizations throughout the cotton family. Proc. Natl. Acad. Sci. USA 121, e2313921121 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mapleson, D., Garcia Accinelli, G., Kettleborough, G., Wright, J. & Clavijo, B. J. KAT: a K-mer analysis toolkit to quality control NGS datasets and genome assemblies. Bioinformatics 33, 574–576 (2016).

    PubMed Central 

    Google Scholar 

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210 (2015).

    PubMed 

    Google Scholar 

  • Liu, D., Tian, X., Shao, S., Ma, Y. & Zhang, R. Haplotype-resolved chromosomal-level genome assembly of Buzhaye (Microcos paniculata). Sci. Data 10, 901 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Motamayor, J. C. et al. The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biol. 14, r53 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, J., Zhang, R., Ma, Y., Ma, Y. & Sun, W. Genome assembly of Firmina major, an endangered savanna tree species endemic to China. https://doi.org/10.1101/2024.09.09.610897 (2024).

  • Sahu, S. K. et al. Chromosome-scale genomes of commercial timber trees (Ochroma pyramidale, Mesua ferrea, and Tectona grandis). Sci. Data 10, 512 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, G. et al. A telomere-to-telomere reference genome assembly of the red silk cotton tree (Bombax ceiba). Sci. Data 12, 1250 (2025).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, R. G. et al. SOI: robust identification of orthologous synteny with the Orthology Index and broad applications in evolutionary genomics. Nucleic Acids Res. 53, gkaf320 (2025).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Argout, X. et al. The genome of Theobroma cacao. Nat. Genet. 43, 101–108 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shao, L. et al. High-quality genomes of Bombax ceiba and Ceiba pentandra provide insights into the evolution of Malvaceae species and differences in their natural fiber development. Plant Commun. 5, 100832 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marcussen, T. et al. Ancient hybridizations among the ancestral genomes of bread wheat. Science 345, 1250092 (2014).

    PubMed 

    Google Scholar 

  • He, Q. et al. High-quality genome of allotetraploid Avena barbata provides insights into the origin and evolution of B subgenome in Avena. J. Integr. Plant Biol. 67, 1515–1532 (2025).

  • Guo, X. et al. Linked by ancestral bonds: multiple whole-genome duplications and reticulate evolution in a Brassicaceae tribe. Mol. Biol. Evol. 38, 1695–1714 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Jang, T. et al. Multiple origins and nested cycles of hybridization result in high tetraploid diversity in the monocot Prospero. Front. Plant Sci. 9, 433 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Steenwyk, J. L., Li, Y., Zhou, X., Shen, X. & Rokas, A. Incongruence in the phylogenomics era. Nat. Rev. Genet. 24, 834–850 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nyffeler, R. & Baum, D. A. Phylogenetic relationships of the durians (Bombacaceae-Durioneae or /Malvaceae/Helicteroideae/Durioneae) based on chloroplast and nuclear ribosomal DNA sequences. Plant Syst. Evol. 224, 55–82 (2000).

    CAS 

    Google Scholar 

  • Degnan, J. & Rosenberg, N. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24, 332–340 (2009).

    PubMed 

    Google Scholar 

  • Sun, P. et al. WGDI: A user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes. Mol. Plant 15, 1841–1851 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Sun, P. et al. Whole-genome-based paloegenomics reveals angiosperm karyotype evolution during their early history. https://doi.org/10.2139/ssrn.4482425 (2023).

  • Udall, J. A. et al. The genome sequence of Gossypioides kirkii illustrates a descending dysploidy in plants. Front. Plant Sci. 10, 1541 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, M. et al. Genomic innovation and regulatory rewiring during evolution of the cotton genus Gossypium. Nat. Genet. 54, 1959–1971 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Marinho, R. C. et al. Do chromosome numbers reflect phylogeny? New counts for Bombacoideae and a review of Malvaceae s.l. Am. J. Bot. 101, 1456–1465 (2014).

    PubMed 

    Google Scholar 

  • Feng, X. et al. Genomic evidence for rediploidization and adaptive evolution following the whole-genome triplication. Nat. Commun. 15, 1635 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J. et al. Deciphering recursive polyploidization in Lamiales and reconstructing their chromosome evolutionary trajectories. Plant Physiol. 195, kiae151 (2024).

    Google Scholar 

  • Zhang, T. et al. Cultivated hawthorn (Crataegus pinnatifida var. major) genome sheds light on the evolution of Maleae (apple tribe). J. Integr. Plant Biol. 64, 1487–1501 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Ding, Y. M. et al. Genome structure-based Juglandaceae phylogenies contradict alignment-based phylogenies and substitution rates vary with DNA repair genes. Nat. Commun. 14, 617 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lanfear, R. et al. Taller plants have lower rates of molecular evolution. Nat. Commun. 4, 1879 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • Cheng, F. et al. Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLoS ONE 7, e36442 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brownfield, L. & Kohler, C. Unreduced gamete formation in plants: mechanisms and prospects. J. Exp. Bot. 62, 1659–1668 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Garsmeur, O. et al. Two evolutionarily distinct classes of paleopolyploidy. Mol. Biol. Evol. 31, 448–454 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Li, Z. et al. Gene duplicability of core genes is highly consistent across all angiosperms. Plant Cell 28, 326–344 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, W., Liu, Y., Xia, E. & Gao, L. Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants. Plant Physiol. 161, 1844–1861 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, H., Almeida-Silva, F., Logghe, G., Bonte, D. & Van de Peer, Y. The rise of polyploids during environmental catastrophes. https://doi.org/10.1101/2024.11.22.624806 (2024).

  • Soltis, D. E., Buggs, R. J. A., Doyle, J. J. & Soltis, P. S. What we still don’t know about polyploidy. Taxon 59, 1387–1403 (2010).

    Google Scholar 

  • Comai, L. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6, 836–846 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Li, Z. et al. Patterns and processes of diploidization in land plants. Annu. Rev. Plant Biol. 72, 387–410 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).

    Google Scholar 

  • Ramsey, J. & Schemske, D. W. Neopolyploidy in flowering plants. Annu. Rev. Ecol. Syst. 33, 589–639 (2002).

    Google Scholar 

  • Rieseberg, L. H. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 16, 351–358 (2001).

    PubMed 

    Google Scholar 

  • Bowers, J. E. & Paterson, A. H. Chromosome number is key to longevity of polyploid lineages. New Phytol. 231, 19–28 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Carta, A. & Escudero, M. Karyotypic diversity: a neglected trait to explain angiosperm diversification? Evolution 77, 1158–1164 (2023).

    PubMed 

    Google Scholar 

  • Albalat, R. & Cañestro, C. Evolution by gene loss. Nat. Rev. Genet. 17, 379–391 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Xiong, Z., Gaeta, R. T. & Pires, J. C. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc. Natl. Acad. Sci. USA 108, 7908–7913 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chester, M. et al. Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc. Natl. Acad. Sci. USA 109, 1176–1181 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure from small quantity of fresh leaf material. Phytochem. Bull. 119, 11–15 (1987).

    Google Scholar 

  • van Berkum, N. L. et al. Hi-C: a method to study the three-dimensional architecture of genomes. J. Vis. Exp. 39, e1869 (2010).

    Google Scholar 

  • Kokot, M., Długosz, M. & Deorowicz, S. KMC 3: counting and manipulating k-mer statistics. Bioinformatics 33, 2759–2761 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, H. et al. Haplotype-resolved assembly of diploid genomes without parental data. Nat. Biotechnol. 40, 1332–1335 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-eesolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Durand, N. C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, G. et al. LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly. Gigascience 8, giy157 (2019).

    PubMed 

    Google Scholar 

  • Adams, S. P. et al. Loss and recovery of Arabidopsis–type telomere repeat sequences 5′–(TTTAGGG)n–3′ in the evolution of a major radiation of flowering plants. Proc. R. Soc. B. 268, 1541–1546 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, J. et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21, 241 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, J. et al. NextPolish2: a repeat-aware polishing tool for genomes assembled using HiFi long reads. Genom. Proteom. Bioinform. 22, qzad009 (2024).

    Google Scholar 

  • Pryszcz, L. P. & Toni, G. Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic Acids Res. 44, e113 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ou, S. et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20, 275 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinform. 25, 4–10 (2009).

    Google Scholar 

  • Zhang, L. et al. Reference genomes of the two cultivated jute species. Plant Biotechnol. J. 19, 2235–2248 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, Z. et al. Evolution of coastal forests based on a full set of mangrove genomes. Nat. Ecol. Evol. 6, 738–749 (2022).

    PubMed 

    Google Scholar 

  • Gao, Y. et al. De novo genome assembly of the red silk cotton tree (Bombax ceiba). Gigascience 7, giy051 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, S. et al. The chromosome-scale genomes of Dipterocarpus turbinatus and Hopea hainanensis (Dipterocarpaceae) provide insights into fragrant oleoresin biosynthesis and hardwood formation. Plant Biotechnol. J. 20, 538–553 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Ding, X. et al. Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family. Gigascience 9, giaa013 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, C. Y. et al. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 89, 789–804 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Yue, J. et al. SunUp and Sunset genomes revealed impact of particle bombardment mediated transformation and domestication history in papaya. Nat. Genet. 54, 715–724 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinform. 12, 491 (2011).

    Google Scholar 

  • Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, R. G. et al. TEsorter: an accurate and fast method to classify LTR-retrotransposons in plant genomes. Hortic. Res. 9, uhac017 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nawrocki, E. P. et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 43, D130–D137 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, C. & Mirarab, S. ASTRAL-Pro 2: ultrafast species tree reconstruction from multi-copy gene family trees. Bioinformatics 38, 4949–4950 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Standley, D. M. & Katoh, K. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Z. et al. A high-quality Buxus austro-yunnanensis (Buxales) genome provides new insights into karyotype evolution in early eudicots. BMC Biol. 20, 216 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jia, K. et al. SubPhaser: a robust allopolyploid subgenome phasing method based on subgenome-specific k-mers. New Phytol. 235, 801–809 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, C., Mirarab, S. & Takahashi, A. Weighting by gene tree uncertainty improves accuracy of quartet-based species trees. Mol. Biol. Evol. 39, msac215 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, C., Nielsen, R. & Mirarab, S. CASTER: Direct species tree inference from whole-genome alignments. Science 387, eadk9688 (2025).

    CAS 
    PubMed 

    Google Scholar 

  • Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2005).

    PubMed 

    Google Scholar 

  • Kvacek, Z., Manchester, S. R. & Akhmetiev, M. A. Review of the fossil history of Craigia (Malvaceae s.l.) in the Northern Hemisphere based on fruits and co-occurring folliage. Trans. Int. Palaeobot. Conf. 114–140 (2005).

  • Ferguson, D. K., Liu, Y. S. & Zetter, R. The paleoendemic plants of East Asia: evidence from the fossil record for changing distribution patterns. In: (ed Jablonski, N. G.). The Changing Face of East Asia during the Tertiary and Quaternary. (Centre of Asian Studies, The University of Hong Kong, 1997) pp 359–371.

  • Carvalho, M. R., Herrera, F. A., Jaramillo, C. A., Wing, S. L. & Callejas, R. Paleocene Malvaceae from northern South America and their biogeographical implications. Am. J. Bot. 98, 1337–1355 (2011).

    PubMed 

    Google Scholar 

  • Kumar, S. et al. TimeTree 5: an expanded resource for species divergence times. Mol. Biol. Evol. 39, msac174 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanderson, M. J. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301–302 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Claramunt, S. CladeDate: Calibration information generator for divergence time estimation. Methods Ecol. Evol. 13, 2331–2338 (2022).

    Google Scholar 

  • Silvestro, D. et al. Fossil data support a pre-Cretaceous origin of flowering plants. Nat. Ecol. Evol. 5, 449–457 (2021).

    PubMed 

    Google Scholar 

  • Shang, H. et al. Phytop: A tool for visualizing and recognizing signals of incomplete lineage sorting and hybridization using species trees output from ASTRAL. Hortic. Res. 12, uhae330 (2025).

    CAS 
    PubMed 

    Google Scholar 

  • Tian, Z. et al. Thirteen Dipterocarpoideae genomes provide insights into their evolution and borneol biosynthesis. Plant Commun. 3, 100464 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Solís-Lemus, C. & Ané, C. Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLoS Genet. 12, e1005896 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Solís-Lemus, C., Bastide, P. & Ané, C. PhyloNetworks: a package for phylogenetic networks. Mol. Biol. Evol. 34, 3292–3298 (2017).

    PubMed 

    Google Scholar 

  • Cai, R. & Ané, C. Assessing the fit of the multi-species network coalescent to multi-locus data. Bioinformatics 37, 634–641 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Pang, X. & Zhang, D. Detection of ghost introgression requires exploiting topological and branch length information. Syst. Biol. 73, syad077 (2024).

    Google Scholar 

  • Flouri, T., Jiao, X., Rannala, B. & Yang, Z. A Bayesian implementation of the multispecies coalescent model with introgression for phylogenomic analysis. Mol. Biol. Evol. 37, 1211–1223 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Rannala, B. & Yang, Z. Efficient Bayesian species tree inference under the multispecies coalescent. Syst. Biol. 66, 823–842 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Flouri, T. et al. Bayesian phylogenetic inference using relaxed-clocks and the multispecies coalescent. Mol. Biol. Evol. 39, msac161 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11, 1650–1667 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 11, R14 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kindt, R. WorldFlora: An R package for exact and fuzzy matching of plant names against the World Flora Online taxonomic backbone data. Appl. Plant Sci. 8, e11388 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

    ADS 

    Google Scholar 

  • Delgado-Paredes, G. E. et al. In situ germplasm conservation of Gossypium raimondii Ulbricht (“Algodoncillo”) in the Lambayeque region (Peru). Pak. J. Bot. 53, 2135–2142 (2021).

    Google Scholar 

  • Idowu, B. F. & Samuel, O. A. Cacao growth and development under different nursery and field conditions. In: (ed Peter, O. A.). Theobroma Cacao—Deploying Science for Sustainability of Global Cocoa Economy. pp 1–19 (IntechOpen, Rijeka, 2019).

  • Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Continue Reading