Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119.
Google Scholar
Magliano DJ, Boyko EJ. IDF diabetes atlas 10th edition scientific committee. Idf diabetes atlas. 10th ed. Brussels: International Diabetes Federation; 2021.
GBD 2021 Diabetes Collaborators. Global, regional, and National burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the global burden of disease study 2021. Lancet (lond Engl). 2023;402:203–34.
Bai A, Tao J, Tao L, Liu J. Prevalence and risk factors of diabetes among adults aged 45 years or older in china: a National cross-sectional study. Endocrinol Diabetes Metab. 2021;4:e00265.
Google Scholar
Chen S, Ling Y, Zhou F, Qiao X, Reinhardt JD. Trajectories of cognitive function among people aged 45 years and older living with diabetes in china: results from a nationally representative longitudinal study (2011 ~ 2018). PLoS One. 2024;19:e0299316.
Google Scholar
Ruze R, Liu T, Zou X, Song J, Chen Y, Xu R, et al. Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Front Endocrinol. 2023;14:1161521.
Narayan KMV, Boyle JP, Thompson TJ, Gregg EW, Williamson DF. Effect of BMI on lifetime risk for diabetes in the U.S. Diabetes Care. 2007;30:1562–6.
Google Scholar
Chen Q, Li C-F, Jing W. Research progress on the effects of sedentary behavior and physical activity on diabetes mellitus. Sheng Li Xue Bao: [acta Physiol Sin. 2025;77:62–74.
Google Scholar
Yuan S, Li X, Liu Q, Wang Z, Jiang X, Burgess S, et al. Physical activity, sedentary behavior, and type 2 diabetes: Mendelian randomization analysis. J Endocr Soc. 2023;7:bvad090.
Google Scholar
Falchi F, Cinzano P, Duriscoe D, Kyba CCM, Elvidge CD, Baugh K, et al. The new world atlas of artificial night Sky brightness. Sci Adv. 2016;2:e1600377.
Google Scholar
Baek J-H, Zhu Y, Jackson CL, Park Y-MM. Artificial light at night and type 2 diabetes mellitus. Diabetes Metab J. 2024;48:847–63.
Google Scholar
Yang B-Y, Fan S, Thiering E, Seissler J, Nowak D, Dong G-H, et al. Ambient air pollution and diabetes: A systematic review and meta-analysis. Environ Res. 2020;180:108817.
Google Scholar
Li S, Guo B, Jiang Y, Wang X, Chen L, Wang X, et al. Long-term exposure to ambient PM2.5 and its components associated with diabetes: evidence from a large Population-Based cohort from China. Diabetes Care. 2023;46:111–9.
Google Scholar
Bonanni LJ, Wittkopp S, Long C, Aleman JO, Newman JD. A review of air pollution as a driver of cardiovascular disease risk across the diabetes spectrum. Front Endocrinol. 2024;15:1321323.
Wang H, Li Z, Wang J, Liu Y, Xiao G, Quan H, et al. Independent and joint air pollutants exposure associated with kidney dysfunction mediating by hematocyte. Sci Rep. 2025;15:10033.
Google Scholar
De la Fuente F, Saldías MA, Cubillos C, Mery G, Carvajal D, Bowen M, et al. Green space exposure association with type 2 diabetes mellitus, physical activity, and obesity: A systematic review. Int J Environ Res Public Health. 2020;18:97.
Google Scholar
Doubleday A, Knott CJ, Hazlehurst MF, Bertoni AG, Kaufman JD, Hajat A. Neighborhood greenspace and risk of type 2 diabetes in a prospective cohort: the multi-ethncity study of atherosclerosis. Environ Health: Glob Access Sci Source. 2022;21:18.
Zhao Y, Hu Y, Smith JP, Strauss J, Yang G. Cohort profile: the China health and retirement longitudinal study (CHARLS). Int J Epidemiol. 2014;43:61–8.
Google Scholar
Zhao C, Cao X, Chen X, Cui X. A consistent and corrected nighttime light dataset (CCNL 1992-2013) from DMSP-OLS data. Sci Data. 2022;9:424.
Google Scholar
Zhu N, Li X, Yang S, Ding Y, Zeng G. Spatio-temporal dynamics and influencing factors of carbon emissions (1997–2019) at County level in Mainland China based on DMSP-OLS and NPP-VIIRS nighttime light datasets. Heliyon. 2024;10:e37245.
Google Scholar
Sono D, Wei Y, Chen Z, Jin Y. Spatiotemporal evolution of West africa’s urban landscape characteristics applying harmonized DMSP-OLS and NPP-VIIRS nighttime light (NTL) data. Chin Geogr Sci. 2022;32:933–45.
Google Scholar
Ou J, Liu X, Li X, Li M, Li W. Evaluation of NPP-VIIRS nighttime light data for mapping global fossil fuel combustion CO2 emissions: A comparison with DMSP-OLS nighttime light data. PLoS ONE. 2015;10:e0138310.
Google Scholar
Zeng T, Jin H, Geng Z, Kang Z, Zhang Z. Urban-rural fringe long-term sequence monitoring based on a comparative study on DMSP-OLS and NPP-VIIRS nighttime light data: a case study of shenyang, China. Int J Environ Res Public Health. 2022;19:11835.
Google Scholar
Yu Z, Wei F, Wu M, Lin H, Shui L, Jin M, et al. Association of long-term exposure to ambient air pollution with the incidence of sleep disorders: A cohort study in China. Ecotoxicol Environ Saf. 2021;211:111956.
Google Scholar
Xue T, Zheng Y, Geng G, Xiao Q, Meng X, Wang M, et al. Estimating Spatiotemporal variation in ambient Ozone exposure during 2013–2017 using a data-fusion model. Environ Sci Technol. 2020;54:14877–88.
Google Scholar
Tian Y, Ma Y, Wu J, Wu Y, Wu T, Hu Y, et al. Ambient PM2.5 chemical composition and cardiovascular disease hospitalizations in China. Environ Sci Technol. 2024;58:16327–35.
Google Scholar
Wei J, Liu S, Li Z, Liu C, Qin K, Liu X, et al. Ground-level NO2 surveillance from space across China for high resolution using interpretable Spatiotemporally weighted artificial intelligence. Environ Sci Technol. 2022;56:9988–98.
Google Scholar
Wei J, Li Z, Guo J, Sun L, Huang W, Xue W, et al. Satellite-Derived 1-km-Resolution PM1 concentrations from 2014 to 2018 across China. Environ Sci Technol. 2019;53:13265–74.
Google Scholar
Liu C, Qiao Y. The association between long-term exposure to ambient PM2.5 and high-density lipoprotein cholesterol level among Chinese middle-aged and older adults. BMC Cardiovasc Disord. 2024;24:173.
Google Scholar
Wei J, Li Z, Xue W, Sun L, Fan T, Liu L, et al. The ChinaHighPM10 dataset: generation, validation, and Spatiotemporal variations from 2015 to 2019 across China. Environ Int. 2021;146:106290.
Google Scholar
Dastigerdi M, Nadi M, Sarjaz MR, Kiapasha K. Trend analysis of MODIS NDVI time series and its relationship to temperature and precipitation in Northeastern of Iran. Environ Monit Assess. 2024;196:346.
Google Scholar
Damasceno Da Silva RM, Castelhano FJ, Albino Sitoe GA, Hoinaski L, Amini H, Saldiva PHN, et al. The mediating role of air pollution in the relationship between greenspace and cardiorespiratory admissions in Brazil. Environ Pollut. 2025;369:125849.
Google Scholar
Pillai R, Zhang L, Peters K, Jha V, O’Donnell CJ, Manning WJ, et al. Age- and sex-differences and reference values for ventricular strain by cardiovascular magnetic resonance imaging in adults without cardiovascular disease or cardiovascular disease risk factors. J Cardiovasc Magn Reson. 2025;27:101902.
Google Scholar
Tennant PWG, Murray EJ, Arnold KF, Berrie L, Fox MP, Gadd SC, et al. Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: review and recommendations. Int J Epidemiol. 2021;50:620–32.
Google Scholar
Ferguson KD, McCann M, Katikireddi SV, Thomson H, Green MJ, Smith DJ, et al. Evidence synthesis for constructing directed acyclic graphs (ESC-DAGs): a novel and systematic method for Building directed acyclic graphs. Int J Epidemiol. 2020;49:322–9.
Google Scholar
Wu G, Cai M, Wang C, Zou H, Wang X, Hua J, et al. Ambient air pollution and incidence, progression to Multimorbidity and death of hypertension, diabetes, and chronic kidney disease: a National prospective cohort. Sci Total Environ. 2023;881:163406.
Google Scholar
Wu Y, Zhang S, Qian SE, Cai M, Li H, Wang C, et al. Ambient air pollution associated with incidence and dynamic progression of type 2 diabetes: a trajectory analysis of a population-based cohort. BMC Med. 2022;20:375.
Google Scholar
GBD2019DandAPC. Estimates, trends, and drivers of the global burden of type 2 diabetes attributable to PM2·5 air pollution, 1990–2019: an analysis of data from the global burden of disease study 2019. Lancet Planet Health. 2022;6:e586–600.
Guo Y, Yang L, Li H, Qiu L, Wang L, Zhang L. County level study of the interaction effect of PM2.5 and climate sustainability on mortality in China. Front Public Health. 2023;10:1036272.
Google Scholar
Wu Y, Jiao Y, Shen P, Qiu J, Wang Y, Xu L, et al. Outdoor light at night, air pollution and risk of incident type 2 diabetes. Environ Res. 2024;263:120055.
Google Scholar
Liao J, Yu C, Cai J, Tian R, Li X, Wang H, et al. The association between artificial light at night and gestational diabetes mellitus: a prospective cohort study from China. Sci Total Environ. 2024;919:170849.
Google Scholar
Windred DP, Burns AC, Rutter MK, Ching Yeung CH, Lane JM, Xiao Q, et al. Personal light exposure patterns and incidence of type 2 diabetes: analysis of 13 million hours of light sensor data and 670,000 person-years of prospective observation. Lancet Reg Health – Europe. 2024;42:100943.
Google Scholar
de Jager DJ, de Mutsert R, Jager KJ, Zoccali C, Dekker FW. Reporting of interaction. Nephron Clin Pract. 2011;119:c158–161.
Google Scholar
Hosmer DW, Lemeshow S. Confidence interval Estimation of interaction. Epidemiol (camb Mass). 1992;3:452–6.
Assmann SF, Hosmer DW, Lemeshow S, Mundt KA. Confidence intervals for measures of interaction. Epidemiol (camb Mass). 1996;7:286–90.
Rijnhart JJM, Lamp SJ, Valente MJ, MacKinnon DP, Twisk JWR, Heymans MW. Mediation analysis methods used in observational research: a scoping review and recommendations. BMC Med Res Methodol. 2021;21:226.
Google Scholar
Mathur MB, VanderWeele TJ. How to report E-values for meta-analyses: recommended improvements and additions to the new GRADE approach. Environ Int. 2022;160:107032.
Google Scholar
Localio AR, Stack CB, Griswold ME. Sensitivity analysis for unmeasured confounding: E-Values for observational studies. Ann Intern Med. 2017;167:285–6.
Google Scholar
Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, Haim A, et al. Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci U S A. 2010;107:18664–9.
Google Scholar
Ccami-Bernal F, Soriano-Moreno DR, Fernandez-Guzman D, Tuco KG, Castro-Díaz SD, Esparza-Varas AL, et al. Green space exposure and type 2 diabetes mellitus incidence: a systematic review. Health Place. 2023;82:103045.
Google Scholar
Liang X, Wang Z, Cai H, Zeng YQ, Chen J, Wei X, et al. Outdoor light at night and mortality in the UK biobank: a prospective cohort study. Occup Environ Med. 2024;81:41–7.
Wang H, Yang Y, Li G, Wang Y, Wu Y, Shi L, et al. Exposure to green space, nighttime light, air pollution, and noise and cardiovascular disease risk: A prospective cohort study. Environ Pollut. 2025;367:125603.
Google Scholar
Yang Y, Yu L, Zhu T, Xu S, He J, Mao N, et al. Neuroprotective effects of Lycium barbarum polysaccharide on light-induced oxidative stress and mitochondrial damage via the Nrf2/HO-1 pathway in mouse hippocampal neurons. Int J Biol Macromol. 2023;251:126315.
Google Scholar
Vetter C, Fischer D, Matera JL, Roenneberg T. Aligning work and circadian time in shift workers improves sleep and reduces circadian disruption. Curr Biol. 2015;25:907–11.
Google Scholar
Touitou Y, Reinberg A, Touitou D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: health impacts and mechanisms of circadian disruption. Life Sci. 2017;173:94–106.
Google Scholar
Gentry NW, Ashbrook LH, Fu Y-H, Ptáček LJ. Human circadian variations. J Clin Invest. 2021;131:e148282.
Google Scholar
Zisapel N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol. 2018;175:3190–9.
Google Scholar
Helbich M, Browning MHEM, Huss A. Outdoor light at night, air pollution and depressive symptoms: a cross-sectional study in the Netherlands. Sci Total Environ. 2020;744:140914.
Google Scholar
Zhong C, Wang R, Morimoto LM, Longcore T, Franklin M, Rogne T, et al. Outdoor artificial light at night, air pollution, and risk of childhood acute lymphoblastic leukemia in the California linkage study of Early-Onset cancers. Sci Rep. 2023;13:583.
Google Scholar
Yang T, Gu T, Xu Z, He T, Li G, Huang J. Associations of residential green space with incident type 2 diabetes and the role of air pollution: A prospective analysis in UK biobank. Sci Total Environ. 2023;866:161396.
Google Scholar
Rugel EJ, Brauer M. Quiet, clean, green, and active: A navigation guide systematic review of the impacts of spatially correlated urban exposures on a range of physical health outcomes. Environ Res. 2020;185:109388.
Google Scholar
Venter ZS, Hassani A, Stange E, Schneider P, Castell N. Reassessing the role of urban green space in air pollution control. Proc Natl Acad Sci U S A. 2024;121:e2306200121.
Google Scholar