Targeting tumor metabolic flexibility enhances radiotherapeutic efficacy via mitochondrial complex I Inhibition in an intracranial S180 sarcoma mouse model

  • Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144 (5), 646–674 (2011).

    Google Scholar 

  • Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (New York) 324 (5930), 1029–1033 (2009).

    Google Scholar 

  • Warburg, O. On the Origin of Cancer Cells Vol. 123, p. 309–314 (Science, 1956). 3191.

  • Koppenol, W. H., Bounds, P. L. & Dang, C. V. Otto warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer. 11 (5), 325–337 (2011).

    Google Scholar 

  • Jose, C., Bellance, N. & Rossignol, R. Choosing between Glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochim. Biophys. Acta. 1807 (6), 552–561 (2011).

    Google Scholar 

  • Bonnet, S. et al. A mitochondria-K + channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 11 (1), 37–51 (2007).

    Google Scholar 

  • Greene, J., Segaran, A. & Lord, S. Targeting OXPHOS and the electron transport chain in cancer; molecular and therapeutic implications. Sem. Cancer Biol. 86 (Pt 2), 851–859 (2022).

    Google Scholar 

  • Ward, P. S. & Thompson, C. B. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell. 21 (3), 297–308 (2012).

    Google Scholar 

  • Pavlova, N. N. & Thompson, C. B. The Emerg. Hallm. Cancer Metabolism Cell. Metabolism, 23(1): 27–47. (2016).

    Google Scholar 

  • Dang, C. V. MYC on the path to cancer. Cell 149 (1), 22–35 (2012).

    Google Scholar 

  • Zong, W. X., Rabinowitz, J. D. & White, E. Mitochondria Cancer Mol. Cell., 61(5): 667–676. (2016).

    Google Scholar 

  • Sancho, P. et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metabol. 22 (4), 590–605 (2015).

    Google Scholar 

  • Vlashi, E. & Pajonk, F. Cancer stem cells, cancer cell plasticity and radiation therapy. Sem. Cancer Biol. 31, 28–35 (2015).

    Google Scholar 

  • Fendt, S. M., Frezza, C. & Erez, A. Targeting metabolic plasticity and flexibility dynamics for cancer therapy. Cancer Discov. 10 (12), 1797–1807 (2020).

    Google Scholar 

  • Kreuzaler, P. et al. Adapt and conquer: metabolic flexibility in cancer growth, invasion and evasion. Mol. Metabolism, 33. 83-101 (2020). doi:10.1016/j.molmet.2019.08.021

  • Bailleul, J. & Vlashi, E. Glioblastomas: Hijacking Metabolism To Build a Flexible Shield for Therapy Resistance Vol. 39, p. 957–979 (Antioxidants & Redox Signaling, 2023). 13–15.

  • Obre, E. & Rossignol, R. Emerging concepts in bioenergetics and cancer research: metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy. Int. J. Biochem. Cell Biol. 59, 167–181 (2015).

    Google Scholar 

  • Yang, B. & Shi, J. Chemistry of Advanced Nanomedicines in Cancer Cell Metabolism Regulation. Adv. Sci. (Weinheim Baden-Wurttemberg Germany). 7 (18), p2001388 (2020).

    Google Scholar 

  • Luo, Z. et al. Targeting cancer metabolic pathways for improving chemotherapy and immunotherapy. Cancer Lett. 575, 216396 (2023).

    Google Scholar 

  • Weinberg, S. E. & Chandel, N. S. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 11, 9-15 (2015). doi:10.1038/nchembio.1712

  • Sabharwal, S. S. & Schumacker, P. T. Mitochondrial ROS in cancer: initiators, amplifiers or an achilles’ heel? Nat. Rev. Cancer. 14 (11), 709–721 (2014).

    Google Scholar 

  • Brown, J. M. & Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer. 4 (6), 437–447 (2004).

    Google Scholar 

  • Minchinton, A. I. & Tannock, I. F. Drug penetration in solid tumours. Nat. Rev. Cancer. 6 (8), 583–592 (2006).

    Google Scholar 

  • Vlashi, E. et al. Metabolic state of glioma stem cells and nontumorigenic cells. Proc. Natl. Acad. Sci. U.S.A. 108 (38), 16062–16067 (2011).

    Google Scholar 

  • Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23 (10), 1124–1134 (2017).

    Google Scholar 

  • Janiszewska, M. et al. Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes Dev. 26 (17), 1926–1944 (2012).

    Google Scholar 

  • Viale, A. et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514 (7524), 628–632 (2014).

    Google Scholar 

  • Molina, J. R. et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat. Med. 24 (7), 1036–1046 (2018).

    Google Scholar 

  • Baran, N. et al. Inhibition of mitochondrial complex I reverses NOTCH1-driven metabolic reprogramming in T-cell acute lymphoblastic leukemia. Nat. Commun. 13 (1), 2801 (2022).

    Google Scholar 

  • Zhou, Y. et al. Recent advances of mitochondrial complex I inhibitors for cancer therapy: current status and future perspectives. Eur. J. Med. Chem. 251, 115219 (2023).

    Google Scholar 

  • Al Assi, A. et al. A novel inhibitor of the mitochondrial respiratory complex I with uncoupling properties exerts potent antitumor activity. Cell Death Dis. 15 (5), 311 (2024).

    Google Scholar 

  • Basit, F. et al. Mitochondrial complex I Inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis. 8 (3), e2716 (2017).

    Google Scholar 

  • Yap, T. A. et al. Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: phase I trials. Nat. Med. 29 (1), 115–126 (2023).

    Google Scholar 

  • Tufail, M., Jiang, C. H. & Li, N. Altered metabolism in cancer: insights into energy pathways and therapeutic targets. Mol. Cancer. 23 (1), 203 (2024).

    Google Scholar 

  • Gao, X. et al. Inhibition of Mitochondria NADH-Ubiquinone Oxidoreductase (complex I) Sensitizes the Radioresistant Glioma U87MG Cells To Radiation Vol. 129, p. 110460 (Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 2020).

  • Hess-Stumpp, H. J. C. R. Abstract LB-244: BAY 87-2243, an inhibitor of HIF-1α-induced gene activation, showed promising anti-tumor efficacy in combination with anti-angiogenic therapy and irradiation in preclinical tumor models. Cancer Res. 72 (8_Supplement), LB-244-LB-244 (2012).

    Google Scholar 

  • Ashton, T. M. et al. Oxidative phosphorylation as an emerging target in cancer therapy. Clin. Cancer Research: Official J. Am. Association Cancer Res. 24 (11), 2482–2490 (2018).

    Google Scholar 

  • Liu, Z. et al.Synergistic Antitumor Effect of Combined Radiotherapy and Engineered Salmonella typhimurium in an Intracranial Sarcoma Mouse Model. Vaccines 11 (7), (2023).

  • Tran, T. A. T. et al. Natural killer cell therapy potentially enhances the antitumor effects of bevacizumab plus Irinotecan in a glioblastoma mouse model. Front. Immunol. 13, 1009484 (2022).

    Google Scholar 

  • Smilowitz, H. M. et al. Increasing radiation dose improves immunotherapy outcome and prolongation of tumor dormancy in a subgroup of mice treated for advanced intracerebral melanoma. Cancer Immunol. Immunotherapy: CII. 65 (2), 127–139 (2016).

    Google Scholar 

  • Lan, X. Y. et al. Unlocking the potential of Ultra-High dose fractionated radiation for effective treatment of glioblastoma in mice. J. Cancer. 15 (13), 4060–4071 (2024).

    Google Scholar 

  • Zarghami, N. et al. Half brain irradiation in a murine model of breast cancer brain metastasis: magnetic resonance imaging and histological assessments of dose-response. Radiation Oncol. (London England). 13 (1), 104 (2018).

    Google Scholar 

  • Zanoni, M. et al. Irradiation causes senescence, ATP release, and P2X7 receptor isoform switch in glioblastoma. Cell Death Dis. 13 (1), 80 (2022).

    Google Scholar 

  • Jin, L. et al. The ROS/AKT/S6K axis induces corneal epithelial dysfunctions under LED blue light exposure. Ecotoxicol. Environ. Saf. 287, 117345 (2024).

    Google Scholar 

  • Jiang, J. et al. Catechin Promotes Endoplasmic Reticulum stress-mediated Gastric Cancer Cell Apoptosis Via NOX4-induced Reactive Oxygen Species (Molecular and Cellular Biochemistry, 2024).

  • DeBerardinis, R. J. et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metabol. 7 (1), 11–20 (2008).

    Google Scholar 

  • Zong, Y. et al. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal. Transduct. Target. Therapy. 9 (1), 124 (2024).

    Google Scholar 

  • Raimondi, V., Ciccarese, F. & Ciminale, V. Oncogenic pathways and the electron transport chain: a DangeROS liaison. Br. J. Cancer. 122 (2), 168–181 (2020).

    Google Scholar 

  • Perillo, B. et al. ROS in cancer therapy: the bright side of the Moon. Exp. Mol. Med. 52 (2), 192–203 (2020).

    Google Scholar 

  • Dosunmu-Ogunbi, A. M. et al. Decoding the role of SOD2 in sickle cell disease. Blood Adv. 3 (17), 2679–2687 (2019).

    Google Scholar 

  • Bastin, J. et al. Downregulation of mitochondrial complex I induces ROS production in colorectal cancer subtypes that differently controls migration. J. Translational Med. 21 (1), 522 (2023).

    Google Scholar 

  • Hubackova, S. et al. Mitochondria-driven elimination of cancer and senescent cells. Biol. Chem. 400 (2), 141–148 (2019).

    Google Scholar 

  • Martínez-Reyes, I. & Chandel, N. S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11 (1), 102 (2020).

    Google Scholar 

  • Martell, E. et al. Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 Medulloblastoma. Nat. Commun. 14 (1), 2502 (2023).

    Google Scholar 

  • Zhang, Z. et al. Redox signaling in drug-tolerant persister cells as an emerging therapeutic target. EBioMedicine 89, 104483 (2023).

    Google Scholar 

  • Ivashkevich, A. et al. Use of the γ-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett. 327 (1–2), 123–133 (2012).

    Google Scholar 

  • Guo, C. et al. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regeneration Res. 8 (21), 2003–2014 (2013).

    Google Scholar 

  • Borodkina, A. et al. Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells. Aging 6 (6), 481–495 (2014).

    Google Scholar 

  • Stiff, T. et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 64 (7), 2390–2396 (2004).

    Google Scholar 

  • Alarifi, S. et al. Regulation of apoptosis through bcl-2/bax proteins expression and DNA damage by nano-sized gadolinium oxide. Int. J. Nanomed. 12, 4541–4551 (2017).

    Google Scholar 

  • Kalkavan, H. & Green, D. R. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 25 (1), 46–55 (2018).

    Google Scholar 

  • Chipuk, J. E. & Green, D. R. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol. 18 (4), 157–164 (2008).

    Google Scholar 

  • Wang, C. & Youle, R. J. The role of mitochondria in apoptosis*. Annu. Rev. Genet., 43. 95-118 (2009). doi:10.1146/annurev-genet-102108-134850

  • Vyas, S., Zaganjor, E. & Haigis, M. C. Mitochondria Cancer Cell., 166(3): 555–566. (2016).

    Google Scholar 

  • Porter, A. G. & Jänicke, R. U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ., 6, 99-104 (1999). doi:10.1038/sj.cdd.4400476

  • Ferreira, K. S. et al. Caspase-3 feeds back on caspase-8, bid and XIAP in type I Fas signaling in primary mouse hepatocytes. Apoptosis: Int. J. Program. Cell. Death. 17 (5), 503–515 (2012).

    Google Scholar 

  • Diepart, C. et al. Arsenic trioxide treatment decreases the oxygen consumption rate of tumor cells and radiosensitizes solid tumors. Cancer Res. 72 (2), 482–490 (2012).

    Google Scholar 

  • Park, Y. Y. et al. ATP Depletion during Mitotic Arrest Induces Mitotic Slippage and APC/CCdh1-dependent Cyclin B1 Degradation Vol. 50 (Experimental & Molecular Medicine, 2018). 4.

  • Hoeijmakers, J. H. J. DNA damage, aging, and cancer. N. Engl. J. Med. 361 (15), 1475–1485 (2009).

    Google Scholar 

  • Sancar, A. et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).

    Google Scholar 

  • McCann, E., O’Sullivan, J. & Marcone, S. Targeting cancer-cell mitochondria and metabolism to improve radiotherapy response. Translational Oncol. 14 (1), 100905 (2021).

    Google Scholar 

  • Engeland, K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 29 (5), 946–960 (2022).

    Google Scholar 

  • Zheng, X. X. et al. Mitochondria in cancer stem cells: Achilles heel or hard armor. Trends Cell Biol. 33 (8), 708–727 (2023).

    Google Scholar 

  • Fan, M. et al. Cancer stem cell fate determination: mito-nuclear communication. Cell. Communication Signaling: CCS. 21 (1), 159 (2023).

    Google Scholar 

  • Fleury, C., Mignotte, B. & Vayssière, J. L. Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84 (2–3), 131–141 (2002).

    Google Scholar 

  • Stine, Z. E. et al. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug Discov. 21 (2), 141–162 (2022).

    Google Scholar 

  • Xu, Y. et al. Why all the fuss about oxidative phosphorylation (OXPHOS)? J. Med. Chem. 63 (23), 14276–14307 (2020).

    Google Scholar 

  • Continue Reading