Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144 (5), 646–674 (2011).
Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (New York) 324 (5930), 1029–1033 (2009).
Warburg, O. On the Origin of Cancer Cells Vol. 123, p. 309–314 (Science, 1956). 3191.
Koppenol, W. H., Bounds, P. L. & Dang, C. V. Otto warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer. 11 (5), 325–337 (2011).
Jose, C., Bellance, N. & Rossignol, R. Choosing between Glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochim. Biophys. Acta. 1807 (6), 552–561 (2011).
Bonnet, S. et al. A mitochondria-K + channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 11 (1), 37–51 (2007).
Greene, J., Segaran, A. & Lord, S. Targeting OXPHOS and the electron transport chain in cancer; molecular and therapeutic implications. Sem. Cancer Biol. 86 (Pt 2), 851–859 (2022).
Ward, P. S. & Thompson, C. B. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell. 21 (3), 297–308 (2012).
Pavlova, N. N. & Thompson, C. B. The Emerg. Hallm. Cancer Metabolism Cell. Metabolism, 23(1): 27–47. (2016).
Dang, C. V. MYC on the path to cancer. Cell 149 (1), 22–35 (2012).
Zong, W. X., Rabinowitz, J. D. & White, E. Mitochondria Cancer Mol. Cell., 61(5): 667–676. (2016).
Sancho, P. et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells. Cell Metabol. 22 (4), 590–605 (2015).
Vlashi, E. & Pajonk, F. Cancer stem cells, cancer cell plasticity and radiation therapy. Sem. Cancer Biol. 31, 28–35 (2015).
Fendt, S. M., Frezza, C. & Erez, A. Targeting metabolic plasticity and flexibility dynamics for cancer therapy. Cancer Discov. 10 (12), 1797–1807 (2020).
Kreuzaler, P. et al. Adapt and conquer: metabolic flexibility in cancer growth, invasion and evasion. Mol. Metabolism, 33. 83-101 (2020). doi:10.1016/j.molmet.2019.08.021
Bailleul, J. & Vlashi, E. Glioblastomas: Hijacking Metabolism To Build a Flexible Shield for Therapy Resistance Vol. 39, p. 957–979 (Antioxidants & Redox Signaling, 2023). 13–15.
Obre, E. & Rossignol, R. Emerging concepts in bioenergetics and cancer research: metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy. Int. J. Biochem. Cell Biol. 59, 167–181 (2015).
Yang, B. & Shi, J. Chemistry of Advanced Nanomedicines in Cancer Cell Metabolism Regulation. Adv. Sci. (Weinheim Baden-Wurttemberg Germany). 7 (18), p2001388 (2020).
Luo, Z. et al. Targeting cancer metabolic pathways for improving chemotherapy and immunotherapy. Cancer Lett. 575, 216396 (2023).
Weinberg, S. E. & Chandel, N. S. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 11, 9-15 (2015). doi:10.1038/nchembio.1712
Sabharwal, S. S. & Schumacker, P. T. Mitochondrial ROS in cancer: initiators, amplifiers or an achilles’ heel? Nat. Rev. Cancer. 14 (11), 709–721 (2014).
Brown, J. M. & Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer. 4 (6), 437–447 (2004).
Minchinton, A. I. & Tannock, I. F. Drug penetration in solid tumours. Nat. Rev. Cancer. 6 (8), 583–592 (2006).
Vlashi, E. et al. Metabolic state of glioma stem cells and nontumorigenic cells. Proc. Natl. Acad. Sci. U.S.A. 108 (38), 16062–16067 (2011).
Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23 (10), 1124–1134 (2017).
Janiszewska, M. et al. Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes Dev. 26 (17), 1926–1944 (2012).
Viale, A. et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514 (7524), 628–632 (2014).
Molina, J. R. et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat. Med. 24 (7), 1036–1046 (2018).
Baran, N. et al. Inhibition of mitochondrial complex I reverses NOTCH1-driven metabolic reprogramming in T-cell acute lymphoblastic leukemia. Nat. Commun. 13 (1), 2801 (2022).
Zhou, Y. et al. Recent advances of mitochondrial complex I inhibitors for cancer therapy: current status and future perspectives. Eur. J. Med. Chem. 251, 115219 (2023).
Al Assi, A. et al. A novel inhibitor of the mitochondrial respiratory complex I with uncoupling properties exerts potent antitumor activity. Cell Death Dis. 15 (5), 311 (2024).
Basit, F. et al. Mitochondrial complex I Inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis. 8 (3), e2716 (2017).
Yap, T. A. et al. Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: phase I trials. Nat. Med. 29 (1), 115–126 (2023).
Tufail, M., Jiang, C. H. & Li, N. Altered metabolism in cancer: insights into energy pathways and therapeutic targets. Mol. Cancer. 23 (1), 203 (2024).
Gao, X. et al. Inhibition of Mitochondria NADH-Ubiquinone Oxidoreductase (complex I) Sensitizes the Radioresistant Glioma U87MG Cells To Radiation Vol. 129, p. 110460 (Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 2020).
Hess-Stumpp, H. J. C. R. Abstract LB-244: BAY 87-2243, an inhibitor of HIF-1α-induced gene activation, showed promising anti-tumor efficacy in combination with anti-angiogenic therapy and irradiation in preclinical tumor models. Cancer Res. 72 (8_Supplement), LB-244-LB-244 (2012).
Ashton, T. M. et al. Oxidative phosphorylation as an emerging target in cancer therapy. Clin. Cancer Research: Official J. Am. Association Cancer Res. 24 (11), 2482–2490 (2018).
Liu, Z. et al.Synergistic Antitumor Effect of Combined Radiotherapy and Engineered Salmonella typhimurium in an Intracranial Sarcoma Mouse Model. Vaccines 11 (7), (2023).
Tran, T. A. T. et al. Natural killer cell therapy potentially enhances the antitumor effects of bevacizumab plus Irinotecan in a glioblastoma mouse model. Front. Immunol. 13, 1009484 (2022).
Smilowitz, H. M. et al. Increasing radiation dose improves immunotherapy outcome and prolongation of tumor dormancy in a subgroup of mice treated for advanced intracerebral melanoma. Cancer Immunol. Immunotherapy: CII. 65 (2), 127–139 (2016).
Lan, X. Y. et al. Unlocking the potential of Ultra-High dose fractionated radiation for effective treatment of glioblastoma in mice. J. Cancer. 15 (13), 4060–4071 (2024).
Zarghami, N. et al. Half brain irradiation in a murine model of breast cancer brain metastasis: magnetic resonance imaging and histological assessments of dose-response. Radiation Oncol. (London England). 13 (1), 104 (2018).
Zanoni, M. et al. Irradiation causes senescence, ATP release, and P2X7 receptor isoform switch in glioblastoma. Cell Death Dis. 13 (1), 80 (2022).
Jin, L. et al. The ROS/AKT/S6K axis induces corneal epithelial dysfunctions under LED blue light exposure. Ecotoxicol. Environ. Saf. 287, 117345 (2024).
Jiang, J. et al. Catechin Promotes Endoplasmic Reticulum stress-mediated Gastric Cancer Cell Apoptosis Via NOX4-induced Reactive Oxygen Species (Molecular and Cellular Biochemistry, 2024).
DeBerardinis, R. J. et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metabol. 7 (1), 11–20 (2008).
Zong, Y. et al. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal. Transduct. Target. Therapy. 9 (1), 124 (2024).
Raimondi, V., Ciccarese, F. & Ciminale, V. Oncogenic pathways and the electron transport chain: a DangeROS liaison. Br. J. Cancer. 122 (2), 168–181 (2020).
Perillo, B. et al. ROS in cancer therapy: the bright side of the Moon. Exp. Mol. Med. 52 (2), 192–203 (2020).
Dosunmu-Ogunbi, A. M. et al. Decoding the role of SOD2 in sickle cell disease. Blood Adv. 3 (17), 2679–2687 (2019).
Bastin, J. et al. Downregulation of mitochondrial complex I induces ROS production in colorectal cancer subtypes that differently controls migration. J. Translational Med. 21 (1), 522 (2023).
Hubackova, S. et al. Mitochondria-driven elimination of cancer and senescent cells. Biol. Chem. 400 (2), 141–148 (2019).
Martínez-Reyes, I. & Chandel, N. S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11 (1), 102 (2020).
Martell, E. et al. Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 Medulloblastoma. Nat. Commun. 14 (1), 2502 (2023).
Zhang, Z. et al. Redox signaling in drug-tolerant persister cells as an emerging therapeutic target. EBioMedicine 89, 104483 (2023).
Ivashkevich, A. et al. Use of the γ-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett. 327 (1–2), 123–133 (2012).
Guo, C. et al. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regeneration Res. 8 (21), 2003–2014 (2013).
Borodkina, A. et al. Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells. Aging 6 (6), 481–495 (2014).
Stiff, T. et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 64 (7), 2390–2396 (2004).
Alarifi, S. et al. Regulation of apoptosis through bcl-2/bax proteins expression and DNA damage by nano-sized gadolinium oxide. Int. J. Nanomed. 12, 4541–4551 (2017).
Kalkavan, H. & Green, D. R. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ. 25 (1), 46–55 (2018).
Chipuk, J. E. & Green, D. R. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol. 18 (4), 157–164 (2008).
Wang, C. & Youle, R. J. The role of mitochondria in apoptosis*. Annu. Rev. Genet., 43. 95-118 (2009). doi:10.1146/annurev-genet-102108-134850
Vyas, S., Zaganjor, E. & Haigis, M. C. Mitochondria Cancer Cell., 166(3): 555–566. (2016).
Porter, A. G. & Jänicke, R. U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ., 6, 99-104 (1999). doi:10.1038/sj.cdd.4400476
Ferreira, K. S. et al. Caspase-3 feeds back on caspase-8, bid and XIAP in type I Fas signaling in primary mouse hepatocytes. Apoptosis: Int. J. Program. Cell. Death. 17 (5), 503–515 (2012).
Diepart, C. et al. Arsenic trioxide treatment decreases the oxygen consumption rate of tumor cells and radiosensitizes solid tumors. Cancer Res. 72 (2), 482–490 (2012).
Park, Y. Y. et al. ATP Depletion during Mitotic Arrest Induces Mitotic Slippage and APC/CCdh1-dependent Cyclin B1 Degradation Vol. 50 (Experimental & Molecular Medicine, 2018). 4.
Hoeijmakers, J. H. J. DNA damage, aging, and cancer. N. Engl. J. Med. 361 (15), 1475–1485 (2009).
Sancar, A. et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).
McCann, E., O’Sullivan, J. & Marcone, S. Targeting cancer-cell mitochondria and metabolism to improve radiotherapy response. Translational Oncol. 14 (1), 100905 (2021).
Engeland, K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 29 (5), 946–960 (2022).
Zheng, X. X. et al. Mitochondria in cancer stem cells: Achilles heel or hard armor. Trends Cell Biol. 33 (8), 708–727 (2023).
Fan, M. et al. Cancer stem cell fate determination: mito-nuclear communication. Cell. Communication Signaling: CCS. 21 (1), 159 (2023).
Fleury, C., Mignotte, B. & Vayssière, J. L. Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84 (2–3), 131–141 (2002).
Stine, Z. E. et al. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug Discov. 21 (2), 141–162 (2022).
Xu, Y. et al. Why all the fuss about oxidative phosphorylation (OXPHOS)? J. Med. Chem. 63 (23), 14276–14307 (2020).