Marine reef soundscape monitoring with fiber-optic distributed acoustic sensing

  • Sobha, T., Vibija, C., & Fahima, P. Coral reef: A hot spot of marine biodiversity. In: Conservation and Sustainable Utilization of Bioresources, pp. 171–194. Springer, Singapore (2023)

  • Programme, U.E. Coral Reefs. Accessed: 17 September 2025 (2020). https://www.unep.org/topics/ocean-seas-and-coasts/blue-ecosystems/coral-reefs

  • Lachs, L. & Oñate-Casado, J. Fisheries and tourism: Social, economic, and ecological trade-offs in coral reef systems. In Youmares 9-the Oceans: Our Research 243–260 (Springer, Oldenburg, Germany, 2020).

  • Küfeoğlu, S. SDG-14: Life Below Water, pp. 453–468. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07127-0_16

  • Souter, D., Planes, S., Wicquart, J., Logan, M., Obura, D., & Staub, F. Status of coral reefs of the world: 2020: Executive summary. Global Coral Reef Monitoring network (GCRMN) and International Coral Reef Initiative (2021)

  • Lin, Y.-J. et al. Coral reefs in the northeastern saudi arabian red sea are resilient to mass coral mortality events. Mar. Pollut. Bull. 197, 115693 (2023).

    Google Scholar 

  • Kleinhaus, K. et al. Science, diplomacy, and the red sea’s unique coral reef: It’s time for action. Front. Mar. Sci. 7, 90 (2020).

    Google Scholar 

  • Monroe, A. A. et al. In situ observations of coral bleaching in the central saudi arabian red sea during the 2015/2016 global coral bleaching event. PLoS One 13(4), 0195814 (2018).

    Google Scholar 

  • ISO: Underwater Acoustics-Terminology. International Organization for Standardization Geneva, Switzerland (2017)

  • Lin, T.-H., Akamatsu, T., Sinniger, F. & Harii, S. Exploring coral reef biodiversity via underwater soundscapes. Biol. Cons. 253, 108901 (2021).

    Google Scholar 

  • Lamont, T. A. et al. The sound of recovery: Coral reef restoration success is detectable in the soundscape. J. Appl. Ecol. 59(3), 742–756 (2022).

    Google Scholar 

  • Gordon, T. A. et al. Habitat degradation negatively affects auditory settlement behavior of coral reef fishes. Proc. Natl. Acad. Sci. 115(20), 5193–5198 (2018).

    Google Scholar 

  • Ferrier-Pagès, C. et al. Noise pollution on coral reefs?—A yet underestimated threat to coral reef communities. Mar. Pollut. Bull. 165, 112129 (2021).

    Google Scholar 

  • Piercy, J.J.B. The Relevance of Coral Reef Soundscapes to Iarval Fish Responses. PhD thesis, University of Essex (2015)

  • Raick, X., Di Iorio, L., Gervaise, C., Lossent, J., Lecchini, D., & Parmentier, E. From the reef to the ocean: Revealing the acoustic range of the biophony of a coral reef (moorea island, french polynesia). J. Mar. Sci. Eng. 9(4) (2021https://doi.org/10.3390/jmse9040420

  • Payne, R. & Webb, D. Orientation by means of long range acoustic signaling in baleen whales. Ann. N. Y. Acad. Sci. 188(1), 110–141 (1971).

    Google Scholar 

  • Duarte, C. M. et al. The soundscape of the anthropocene ocean. Science 371(6529), 4658 (2021).

    Google Scholar 

  • Slabbekoorn, H. et al. A noisy spring: The impact of globally rising underwater sound levels on fish. Trends Ecol. Evolut. 25(7), 419–427 (2010).

    Google Scholar 

  • Bohnenstiehl, D. R., Lillis, A. & Eggleston, D. B. The curious acoustic behavior of estuarine snapping shrimp: Temporal patterns of snapping shrimp sound in sub-tidal oyster reef habitat. PLoS One 11(1), 0143691 (2016).

    Google Scholar 

  • Kaplan, M. B., Mooney, T. A., Partan, J. & Solow, A. R. Coral reef species assemblages are associated with ambient soundscapes. Mar. Ecol. Prog. Ser. 533, 93–107 (2015).

    Google Scholar 

  • Saheban, H. & Kordrostami, Z. Hydrophones, fundamental features, design considerations, and various structures: A review. Sens. Actuators, A 329, 112790. https://doi.org/10.1016/j.sna.2021.112790 (2021).

    Google Scholar 

  • Desjonquères, C., Gifford, T. & Linke, S. Passive acoustic monitoring as a potential tool to survey animal and ecosystem processes in freshwater environments. Freshw. Biol. 65(1), 7–19 (2020).

    Google Scholar 

  • Nedelec, S. L. et al. Soundscapes and living communities in coral reefs: Temporal and spatial variation. Mar. Ecol. Prog. Ser. 524, 125–135 (2015).

    Google Scholar 

  • Azofeifa-Solano, J. C. et al. Distance and orientation of hydrophones influence the received soundscape in shallow coral reefs. Front. Remote Sens. 6, 1527988 (2025).

    Google Scholar 

  • Howell, K. L. et al. A decade to study deep-sea life. Nat. Ecol. Evolut. 5(3), 265–267 (2021).

    Google Scholar 

  • Ford, B., Robinson, S., & Ablitt, J. A study of the stability exhibited by hydrophones when exposed to variation in temperature and hydrostatic pressure. In: Proc. of Meetings on Acoustics, vol. 44 (2021)

  • Burkholz, C., Duarte, C. & Garcias-Bonet, N. Thermal dependence of seagrass ecosystem metabolism in the red sea. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/MEPS12912 (2019).

    Google Scholar 

  • Reif, R. H., Liffers, M., Forrester, N. & Peal, K. Lithium battery safety: A look at woods hole oceanographic institution’s program. Prof. Saf. 55(02), 32–37 (2010).

    Google Scholar 

  • Ashry, I. et al. A review of distributed fiber-optic sensing in the oil and gas industry. J. Lightwave Technol. 40(5), 1407–1431 (2022).

    Google Scholar 

  • Juškaitis, R., Mamedov, A., Potapov, V. & Shatalin, S. Distributed interferometric fiber sensor system. Opt. Lett. 17(22), 1623–1625 (1992).

    Google Scholar 

  • Tucker, R. S., Eisenstein, G. & Korotky, S. K. Optical time-division multiplexing for very high bit-rate transmission. J. Lightwave Technol. 6(11), 1737–1749 (2002).

    Google Scholar 

  • Harmon, N., Belal, M., Mangriotis, M.-D., Spingys, C., & Rychert, C.A. Distributed acoustic sensing along a shallow water energy cable. IEEE J. Oceanic Eng. 2025)

  • Marra, G. et al. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables. Science 361(6401), 486–490 (2018).

    Google Scholar 

  • Winzer, P. J. & Neilson, D. T. From scaling disparities to integrated parallelism: A decathlon for a decade. J. Lightwave Technol. 35(5), 1099–1115 (2017).

    Google Scholar 

  • Miele, P., Snead, K., Zakhireh, N., Homa, D., Pickrell, G., & Risch, B.G. Optical fiber reliability in harsh environments. In: Int. Wire & Cable Symp (2020)

  • Bouffaut, L. et al. Eavesdropping at the speed of light: Distributed acoustic sensing of baleen whales in the arctic. Front. Mar. Sci. 9, 901348 (2022).

    Google Scholar 

  • Landrø, M. et al. Sensing whales, storms, ships and earthquakes using an arctic fibre optic cable. Sci. Rep. 12(1), 19226 (2022).

    Google Scholar 

  • Sladen, A. et al. Distributed sensing of earthquakes and ocean-solid earth interactions on seafloor telecom cables. Nat. Commun. 10(1), 5777 (2019).

    Google Scholar 

  • Rørstadbotnen, R.A., Landrø, M., Taweesintananon, K., Bouffaut, L., Potter, J.R., Johansen, S.E., Kriesell, H.J., Brenne, J.K., Haukanes, A., Schjelderup, O., & Storvik, F. Analysis of a local earthquake in the arctic using a 120 km long fibre-optic cable 2022(1), 1–5 (2022) https://doi.org/10.3997/2214-4609.202210404

  • Lin, J. et al. Monitoring ocean currents during the passage of typhoon muifa using optical-fiber distributed acoustic sensing. Nat. Commun. 15(1), 1111 (2024).

    Google Scholar 

  • Richardson, D. J., Fini, J. M. & Nelson, L. E. Space-division multiplexing in optical fibres. Nat. Photonics 7(5), 354–362 (2013).

    Google Scholar 

  • Mao, Y. et al. Simultaneous distributed acoustic and temperature sensing using a multimode fiber. IEEE J. Sel. Top. Quantum Electron. 26(4), 1–7 (2020).

    Google Scholar 

  • Huang, M.-F. et al. First field trial of distributed fiber optical sensing and high-speed communication over an operational telecom network. J. Lightwave Technol. 38(1), 75–81 (2019).

    Google Scholar 

  • Marin, J. M. et al. Simultaneous distributed acoustic sensing and communication over a two-mode fiber. Opt. Lett. 47(24), 6321–6324 (2022).

    Google Scholar 

  • Hu, Z. et al. Enabling cost-effective high-performance vibration sensing in digital subcarrier multiplexing systems. Opt. Express 31(20), 32114–32125 (2023).

    Google Scholar 

  • Guo, Y. et al. Submarine optical fiber communication provides an unrealized deep-sea observation network. Sci. Rep. 13(1), 15412 (2023).

    Google Scholar 

  • Gunawan, W.H., Marin, J.M., Rjeb, A., Kang, C.H., Ashry, I., Ng, T.K., & Ooi, B.S. Energy harvesting over fiber from amplified spontaneous emission in optical sensing and communication systems. J. Lightwave Technol. 2024)

  • Gavrilov, A.N., & Parsons, M.J. A matlab tool for the characterisation of recorded underwater sound (chorus). Acoustics Australia 42(3) (2014)

  • Song, Z. et al. Sounds of snapping shrimp (alpheidae) as important input to the soundscape in the southeast china coastal sea. Front. Mar. Sci. 10, 1029003 (2023).

    Google Scholar 

  • Amorim, M. C. P. Diversity of sound production in fish. Commun. Fishes 1, 71–104 (2006).

    Google Scholar 

  • Ladich, F. Ecology of sound communication in fishes. Fish Fish. 20(3), 552–563 (2019).

    Google Scholar 

  • Ladich, F., Bass, A. & Farrell, A. Vocal behavior of fishes: Anatomy and physiology. Encyclopedia of Fish Physiology: From Genome to Environment 1, 321–329 (2011).

    Google Scholar 

  • Xing, C., Tan, G., & Ran, Y. Enhanced off-grid underwater acoustic signals direction estimation using toeplitz covariance reconstruction and subspace fitting. Circuits, Systems, and Signal Processing, 1–29 (2025)

  • Rørstadbotnen, R. A. et al. Simultaneous tracking of multiple whales using two fiber-optic cables in the arctic. Front. Mar. Sci. 10, 1130898 (2023).

    Google Scholar 

  • Malfante, M., Mars, J. I., Dalla Mura, M. & Gervaise, C. Automatic fish sounds classification. J. Acoust. Soc. Am. 143(5), 2834–2846 (2018).

    Google Scholar 

  • Looby, A. et al. A quantitative inventory of global soniferous fish diversity. Rev. Fish Biol. Fisheries 32(2), 581–595 (2022).

    Google Scholar 

  • Ladich, F. & Fine, M. L. Sound-generating mechanisms in fishes: A unique diversity in vertebrates. Commun. Fishes 1, 3–43 (2006).

    Google Scholar 

  • Staaterman, E., Paris, C. B. & Kough, A. S. First evidence of fish larvae producing sounds. Biol. Let. 10(10), 20140643 (2014).

    Google Scholar 

  • Parsons, M. J. et al. Sounding the call for a global library of underwater biological sounds. Front. Ecol. Evol. 10, 810156 (2022).

    Google Scholar 

  • Ashry, I. et al. Cnn-aided optical fiber distributed acoustic sensing for early detection of red palm weevil: A field experiment. Sensors 22(17), 6491 (2022).

    Google Scholar 

  • Rivet, D., Cacqueray, B., Sladen, A., Roques, A. & Calbris, G. Preliminary assessment of ship detection and trajectory evaluation using distributed acoustic sensing on an optical fiber telecom cable. J. Acoust. Soc. Am. 149(4), 2615–2627 (2021).

    Google Scholar 

  • Liu, Z., Zhang, L., Liu, H., Qiu, Z., Xiao, Z., Chen, Z., Wang, T., & Pang, F. 3d printing technology-enhanced phase-sensitive otdr for underwater acoustic wave detection. Optical Fiber Sensors Conference 2020 Special Edition (2021) https://doi.org/10.1364/ofs.2020.t3.26

  • Zhu, S., Chen, J., Ai, K., Fan, C., Li, H., Yan, Z., & Sun, Q. Fully distributed fiber-optic hydrophone cable for acoustic source azimuth estimation. 2024 OES China Ocean Acoustics (COA), 1–5 (2024) https://doi.org/10.1109/COA58979.2024.10723668

  • Zhang, C., Yang, S. & Wang, X. Dual pulse heterodyne distributed acoustic sensor system employing soa-based fiber ring laser. Front. Phys. 11, 1196067 (2023).

    Google Scholar 

  • Zhang, Y., Yang, H., Chen, Z., Sun, F. & Mao, B. Design and analysis of mems piezoelectric hydrophone based on signal-to-noise ratio. IEEE Sens. J. 25, 11314–11322. https://doi.org/10.1109/JSEN.2025.3540307 (2025).

    Google Scholar 

  • Lamont, T.A.C., Chapuis, L., Williams, B., Dines, S., Gridley, T., Frainer, G., Fearey, J., Maulana, P.B., Prasetya, M.E., Jompa, J., Smith, D.J., & Simpson, S. Hydromoth: Testing a prototype low?cost acoustic recorder for aquatic environments. Remote Sens. Ecol. Conserv. 8 (2022) https://doi.org/10.1002/rse2.249

  • Dahl, P., Miller, J. H., Cato, D. & Andrew, R. Underwater ambient noise. Acoustics Today 3, 23. https://doi.org/10.1121/1.2961145 (2007).

    Google Scholar 

  • Dalton, S. J. et al. Successive marine heatwaves cause disproportionate coral bleaching during a fast phase transition from el niño to la niña. Sci. Total Environ. 715, 136951. https://doi.org/10.1016/j.scitotenv.2020.136951 (2020).

    Google Scholar 

  • Lu, P., Lalam, N., Badar, M., Liu, B., Chorpening, B.T., Buric, M.P., & Ohodnicki, P.R. Distributed optical fiber sensing: Review and perspective. Appl. Phys. Rev.6(4) (2019)

  • Mao, Y. et al. Simultaneous distributed acoustic and temperature sensing using a multimode fiber. IEEE J. Sel. Top. Quantum Electron. 26(4), 1–7 (2020).

    Google Scholar 

  • Mao, Y. et al. Sensing within the otdr dead-zone using a two-mode fiber. Opt. Lett. 45(11), 2969–2972 (2020).

    Google Scholar 

  • Lu, Y., Zhu, T., Chen, L. & Bao, X. Distributed vibration sensor based on coherent detection of phase-otdr. J. Lightwave Technol. 28(22), 3243–3249 (2010).

    Google Scholar 

  • Bao, X., Zhou, D.-P., Baker, C. & Chen, L. Recent development in the distributed fiber optic acoustic and ultrasonic detection. J. Lightwave Technol. 35(16), 3256–3267 (2017).

    Google Scholar 

  • Posey, R. Jr., Johnson, G. & Vohra, S. Strain sensing based on coherent rayleigh scattering in an optical fibre. Electron. Lett. 36(20), 1688–1689 (2000).

    Google Scholar 

  • Lillis, A. & Mooney, T. A. Snapping shrimp sound production patterns on caribbean coral reefs: Relationships with celestial cycles and environmental variables. Coral Reefs 37(2), 597–607 (2018).

    Google Scholar 

  • Ashry, I. et al. Normalized differential method for improving the signal-to-noise ratio of a distributed acoustic sensor. Appl. Opt. 58(18), 4933–4938 (2019).

    Google Scholar 

  • Continue Reading