Three bilberry bHLHs of subgroup IIIf play divergent roles in fruit anthocyanin and flavonoid biosynthesis

  • Wei, K. & Chen, H. Comparative functional genomics analysis of bHLH gene family in rice, maize and wheat. BMC Plant. Biol. 18, 309 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, F. & Dubos, C. The arabidopsis bHLH transcription factor family. Trends Plant. Sci. 29, 668–680 (2024).

    PubMed 

    Google Scholar 

  • Feller, A., Machemer, K., Braun, E. L. & Grotewold, E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant. J. 66, 94–116 (2011).

    PubMed 

    Google Scholar 

  • Saigo, T., Wang, T., Watanabe, M. & Tohge, T. Diversity of anthocyanin and proanthocyanin biosynthesis in land plants. Curr. Opin. Plant. Biol. 55, 93–99 (2020).

    PubMed 

    Google Scholar 

  • Basu, A., Rhone, M. & Lyons, T. J. Berries: emerging impact on cardiovascular health. Nutr. Rev. 68, 168–177 (2010).

    PubMed 

    Google Scholar 

  • Pojer, E., Mattivi, F., Johnson, D. & Stockley, C. S. The case for anthocyanin consumption to promote human health: A review. Compr. Rev. Food Sci. Food Saf. 12, 483–508 (2013).

    PubMed 

    Google Scholar 

  • Cassidy, A. Berry anthocyanin intake and cardiovascular health. Mol. Asp Med. 61, 76–82 (2018).

    Google Scholar 

  • Pires, T. C. S. P., Caleja, C., Santos-Buelga, C., Barros, L. & Ferreira, I. C. F. R. Vaccinium myrtillus L. fruits as a novel source of phenolic compounds with health benefits and industrial applications – a review. Curr. Pharm. Des. 26, 1917–1928 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tohge, T., de Souza, L. P. & Fernie, A. R. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. J. Exp. Bot. 68, 4013–4028 (2017).

    PubMed 

    Google Scholar 

  • Ramsay, N. A. & Glover, B. J. MYB–bHLH–WD40 protein complex and the evolution of cellular diversity. Trends Plant. Sci. 10, 63–70 (2005).

    PubMed 

    Google Scholar 

  • Jaakola, L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant. Sci. 18, 477–483 (2013).

    PubMed 

    Google Scholar 

  • Zhang, B., Chopra, D., Schrader, A. & Hülskamp, M. Evolutionary comparison of competitive protein-complex formation of MYB, bHLH, and WDR proteins in plants. J. Exp. Bot. 70, 3197–3209 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pireyre, M. & Burow, M. Regulation of MYB and bHLH transcription factors: a glance at the protein level. Mol. Plant. 8, 378–388 (2015).

    PubMed 

    Google Scholar 

  • Chen, C. et al. MYB transcription repressors regulate plant secondary metabolism. Crit. Rev. Plant. Sci. 38, 159–170 (2019).

    ADS 

    Google Scholar 

  • Heim, M. A. et al. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol. Biol. Evol. 20, 735–747 (2003).

    PubMed 

    Google Scholar 

  • Gonzalez, A., Zhao, M., Leavitt, J. M. & Lloyd, A. M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant. J. 53, 814–827 (2008).

    PubMed 

    Google Scholar 

  • Feyissa, D. N., Løvdal, T., Olsen, K. M., Slimestad, R. & Lillo, C. The endogenous GL3, but not EGL3, gene is necessary for anthocyanin accumulation as induced by nitrogen depletion in Arabidopsis rosette stage leaves. Planta 230, 747–754 (2009).

    PubMed 

    Google Scholar 

  • Spelt, C., Quattrocchio, F., Mol, J. N. M. & Koes, R. anthocyanin1 of petunia encodes a basic helix–loop–helix protein that directly activates transcription of structural anthocyanin genes. Plant. Cell. 12, 1619–1631 (2000).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Quattrocchio, F. et al. PH4 of petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant. Cell. 18, 1274–1291 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schwinn, K. et al. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant. Cell. 18, 831–851 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Albert, N. W. et al. Discrete bHLH transcription factors play functionally overlapping roles in pigmentation patterning in flowers of Antirrhinum majus. New. Phytol. 231, 849–863 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hichri, I. et al. The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Mol. Plant. 3, 509–523 (2010).

    PubMed 

    Google Scholar 

  • Jiu, S. et al. The role of VvMYBA2r and VvMYBA2w alleles of the MYBA2 locus in the regulation of anthocyanin biosynthesis for molecular breeding of grape (Vitis spp.) skin coloration. Plant. Biotechnol. J. 19, 1216–1239 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Espley, R. V. et al. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant. J. 49, 414–427 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, N. et al. MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant. J. 90, 276–292 (2017).

    PubMed 

    Google Scholar 

  • Yang, J. et al. Identification and expression analysis of the apple (Malus × domestica) basic helix-loop-helix transcription factor family. Sci. Rep. 7, 28 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, X. B. et al. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to a low temperature in apples. Plant. Cell. Environ. 35, 1884–1897 (2012).

    PubMed 

    Google Scholar 

  • Liu, X. F. et al. The role of MrbHLH1 and MrMYB1 in regulating anthocyanin biosynthetic genes in tobacco and Chinese bayberry (Myrica rubra) during anthocyanin biosynthesis. Plant. Cell. Tiss Organ. Cult. 115, 285–298 (2013).

    ADS 

    Google Scholar 

  • Li, T. et al. Anthocyanin biosynthesis in goji berry is inactivated by deletion in a bHLH transcription factor LrLAN1b promoter. Plant. Physiol. 195, 1461–1474 (2024).

    PubMed 

    Google Scholar 

  • Xu, P. et al. Identification of MBW complex components implicated in the biosynthesis of flavonoids in woodland strawberry. Front. Plant. Sci. 12, 774943 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jaakola, L. et al. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant. Physiol. 130, 729–739 (2002).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Karppinen, K., Zoratti, L., Nguyenquynh, N., Häggman, H. & Jaakola, L. On the developmental and environmental regulation of secondary metabolism in Vaccinium spp. berries. Front. Plant. Sci. 7, 655 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Suvanto, J., Karppinen, K., Riihinen, K., Jaakola, L. & Salminen, J. P. Changes in the proanthocyanidin composition and related gene expression in bilberry (Vaccinium myrtillus L.) tissues. J. Agric. Food Chem. 68, 7378–7386 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Karppinen, K. et al. Changes in the abscisic acid levels and related gene expression during fruit development and ripening in bilberry (Vaccinium myrtillus L). Phytochemistry 95, 127–134 (2013).

    PubMed 

    Google Scholar 

  • Karppinen, K., Tegelberg, P., Häggman, H. & Jaakola, L. Abscisic acid regulates anthocyanin biosynthesis and gene expression associated with cell wall modification in ripening bilberry (Vaccinium myrtillus L.) fruits. Front. Plant. Sci. 9, 1259 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bai, Q., Huang, Y. & Shen, Y. The physiological and molecular mechanism of abscisic acid in regulation of fleshy fruit ripening. Front. Plant. Sci. 11, 619953 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fenn, M. A. & Giovannoni, J. J. Phytohormones in fruit development and maturation. Plant. J. 105, 446–458 (2021).

    PubMed 

    Google Scholar 

  • Perotti, M. F., Posé, D. & Martin-Pizarro, C. Non-climacteric fruit development and ripening regulation: ‘the phytohormones show’. J. Exp. Bot. 74, 6237–6253 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Karppinen, K. et al. MYBA and MYBPA transcription factors co-regulate anthocyanin biosynthesis in blue-coloured berries. New. Phytol. 232, 1350–1367 (2021).

    PubMed 

    Google Scholar 

  • Li, X. et al. De novo sequencing and comparative analysis of the blueberry transcriptome to discover putative genes related to antioxidants. Gene 511, 54–61 (2012).

    PubMed 

    Google Scholar 

  • Song, Y. et al. High-throughput sequencing of highbush blueberry transcriptome and analysis of basic helix-loop-helix transcription factors. J. Integr. Agric. 16, 591–604 (2017).

    Google Scholar 

  • Zhao, M. et al. Identification and characterization of MYB-bHLH-WD49 regulatory complex members controlling anthocyanidin biosynthesis in blueberry fruits development. Genes 10, 496 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Günther, C. S. et al. Spatiotemporal modulation of flavonoid metabolism in blueberries. Front. Plant. Sci. 11, 545 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. Identification, characterization and expression analysis of anthocyanin biosynthesis-related bHLH genes in blueberry (Vaccinium corymbosum L). Int. J. Mol. Sci. 22, 13274 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lafferty, D. J. et al. The coordinated action of MYB activators and repressors controls proanthocyanidin and anthocyanin biosynthesis in Vaccinium. Front. Plant. Sci. 13, 910155 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lafferty, D. J. et al. Hierarchical regulation of MYBPA1 by anthocyanin- and proanthocyanidin-related MYB proteins is conserved in Vaccinium species. J. Exp. Bot. 73, 1344–1356 (2022).

    PubMed 

    Google Scholar 

  • Wu, C. et al. A chromosome-scale assembly of the bilberry genome identifies a complex locus controlling berry anthocyanin composition. Mol. Ecol. Res. 22, 345–360 (2022).

    Google Scholar 

  • Guo, X. et al. Metabolome and transcriptome profiling unveil the mechanisms of light-induced anthocyanin synthesis in rabbiteye blueberry (Vaccinium ashei: Reade). BMC Plant. Biol. 22, 223 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pattanaik, S., Xie, C. H. & Yuan, L. The interaction domains of the plant Myc-like bHLH transcription factors can regulate the transactivation strength. Planta 227, 707–715 (2008).

    PubMed 

    Google Scholar 

  • Niu, S. S. et al. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. Planta 231, 887–899 (2010).

    PubMed 

    Google Scholar 

  • Zhang, Y. L. et al. Identification of a strong anthocyanin activator, VbMYBA, from berries of Vaccinium bracteatum Thunb. Front. Plant. Sci. 12, 697212 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Starkevič, P. et al. Expression and anthocyanin biosynthesis-modulating potential of sweet cherry (Prunus avium L.) MYB10 and bHLH genes. PLoS ONE. 10, e0126991 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Spelt, C., Quattrocchio, F., Mol, J. & Koes, R. ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. Plant. Cell. 14, 2121–2135 (2002).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rahim, M. A., Busatto, N. & Trainotti, L. Regulation of anthocyanin biosynthesis in peach fruits. Planta 240, 913–929 (2014).

    PubMed 

    Google Scholar 

  • Nesi, N. et al. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant. Cell. 12, 1863–1878 (2000).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, F., Gonzalez, A., Zhao, M., Payne, C. T. & Lloyd, A. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130, 4859–4869 (2003).

    PubMed 

    Google Scholar 

  • Baudry, A. et al. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant. J. 39, 366–380 (2004).

    Google Scholar 

  • Elomaa, P. et al. Activation of anthocyanin biosynthesis in Gerbera hybrida (Asteraceae) suggests conserved protein-protein and protein-promoter interactions between the anciently diverged monocots and eudicots. Plant. Physiol. 133, 1831–1842 (2003).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramsay, N. A., Walker, A. R., Mooney, M. & Gray, J. C. Two basic-helix-loop-helix genes (MYC-146 and GL3) from Arabidopsis can activate anthocyanin biosynthesis in a white-flowered Matthiola incana mutant. Plant. Mol. Biol. 52, 679–688 (2003).

    PubMed 

    Google Scholar 

  • Butelli, E. et al. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 26, 1301–1308 (2008).

    PubMed 

    Google Scholar 

  • Sharma, S. et al. Cyanidin based anthocyanin biosynthesis in orange carrot is restored by expression of AmRosea1 and AmDelila, MYB and bHLH transcription factors. Plant. Mol. Biol. 103, 443–456 (2020).

    PubMed 

    Google Scholar 

  • Piao, C., Wu, J. & Cui, M. L. The combination of R2R3-MYB gene AmRosea1 and hairy root culture is a useful tool for rapidly induction and production of anthocyanins in Antirrhinum majus L. AMB Expr. 11, 128 (2021).

    Google Scholar 

  • Mehrtens, F., Kranz, H., Bednarek, P. & Weisshaar, B. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant. Physiol. 138, 1083–1096 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Takos, A. M. et al. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant. Physiol. 142, 1216–1232 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Albert, N. W. et al. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant. Cell. 26, 962–980 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, T. et al. Transcriptome and flavonoids metabolomic analysis identifies regulatory networks and hub genes in black and white fruits of Lycium ruthenicum Murray. Front. Plant. Sci. 11, 1256 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Qi, Y. et al. PsbHLH1, a novel transcription factor involved in regulating anthocyanin biosynthesis in tree peony (Paeonia suffruticosa). Plant. Physiol. Biochem. 154, 396–408 (2020).

    PubMed 

    Google Scholar 

  • Lai, B. et al. Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation. Front. Plant. Sci. 7, 166 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Medina-Puche, L. et al. Extensive transcriptomic studies on the roles played by abscisic acid and auxins in the development and ripening of strawberry fruits. Funct. Integr. Genomics. 16, 671–692 (2016).

    PubMed 

    Google Scholar 

  • Sánchez-Gómez, C. & Posé, D. Martín-Pizarro, C. Insights into transcription factors controlling strawberry fruit development and ripening. Front. Plant. Sci. 13, 1022369 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tohge, T. et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant. J. 42, 218–235 (2005).

    PubMed 

    Google Scholar 

  • Montefiori, M. et al. In the Solanaceae, a hierarchy of bHLHs confer distinct target specificity to the anthocyanin regulatory complex. J. Exp. Bot. 66, 1427–1436 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nicholas, K. B., Nicholas, H. B. Jr. & Deerfield, D. W. II. GeneDoc: analysis and visualization of genetic variation. EMBnet News. 4, 1–4 (1997).

    Google Scholar 

  • Edema, H., Ashraf, M. F., Samkumar, A., Jaakola, L. & Karppinen, K. Characterization of cellulases from softening fruit for enzymatic depolymerization of cellulose. Carbohydr. Polym. 343, 122493 (2024).

    PubMed 

    Google Scholar 

  • Chu, H. et al. Expression of the sweetpotato R2R3-type IbMYB1a gene induces anthocyanin accumulation in Arabidopsis. Physiol. Plant. 148, 189–199 (2013).

    PubMed 

    Google Scholar 

  • Continue Reading