Brugada, P. & Brugada, J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J. Am. Coll. Cardiol. 20, 1391–1396 (1992).
Monasky, M. M. et al. Genotype-phenotype correlation in a family with Brugada syndrome harboring the novel p.Gln371* nonsense variant in the SCN5A gene. Int. J. Mol. Sci. 20, 5522 (2019).
Milman, A. et al. Profile of patients with Brugada syndrome presenting with their first documented arrhythmic event: data from the Survey on Arrhythmic Events in BRUgada Syndrome (SABRUS). Heart Rhythm 15, 716–724 (2018).
Rimmerman, N. et al. N-palmitoyl glycine, a novel endogenous lipid that acts as a modulator of calcium influx and nitric oxide production in sensory neurons. Mol. Pharm. 74, 213–224 (2008).
Bradshaw, H. B., Raboune, S. & Hollis, J. L. Opportunistic activation of TRP receptors by endogenous lipids: exploiting lipidomics to understand TRP receptor cellular communication. Life Sci. 92, 404–409 (2013).
Amarouch, M. Y. & El Hilaly, J. Inherited Cardiac Arrhythmia Syndromes: focus on molecular mechanisms underlying TRPM4 channelopathies. Cardiovasc. Ther. 2020, 6615038 (2020).
Alom, F. et al. Possible antagonistic effects of the TRPC4 channel blocker ML204 on M(2) and M(3) muscarinic receptors in mouse ileal and detrusor smooth muscles and atrial myocardium. J. Vet. Med Sci. 80, 1407–1415 (2018).
Szentandrássy, N. et al. Effects of rosiglitazone on the configuration of action potentials and ion currents in canine ventricular cells. Br. J. Pharmacol. 163, 499–509 (2011).
Pieroni, M. et al. Electroanatomic and pathologic right ventricular outflow tract abnormalities in patients with Brugada Syndrome. J. Am. Coll. Cardiol. 72, 2747–2757 (2018).
Bonny, A. et al. C-reactive protein levels in the Brugada syndrome. Cardiol. Res Pract. 2011, 341521 (2011).
Li, A., Tung, R., Shivkumar, K. & Bradfield, J. S. Brugada syndrome-Malignant phenotype associated with acute cardiac inflammation? HeartRhythm Case Rep. 3, 384–388 (2017).
Gijsbers, K. et al. GCP-2/CXCL6 synergizes with other endothelial cell-derived chemokines in neutrophil mobilization and is associated with angiogenesis in gastrointestinal tumors. Exp. Cell Res. 303, 331–342 (2005).
Torán, J. L. et al. CXCL6 is an important paracrine factor in the pro-angiogenic human cardiac progenitor-like cell secretome. Sci. Rep. 7, 12490 (2017).
Bahudhanapati, H. et al. Increased expression of CXCL6 in secretory cells drives fibroblast collagen synthesis and is associated with increased mortality in idiopathic pulmonary fibrosis. Eur. Respir. J. 63, 2300088 (2024).
Shandelya, S. M., Kuppusamy, P., Herskowitz, A., Weisfeldt, M. L. & Zweier, J. L. Soluble complement receptor type 1 inhibits the complement pathway and prevents contractile failure in the postischemic heart. Evidence that complement activation is required for neutrophil-mediated reperfusion injury. Circulation 88, 2812–2826 (1993).
Lazar, H. L. et al. Beneficial effects of complement inhibition with soluble complement receptor 1 (TP10) during cardiac surgery. Circulation 116, I-83–I-88 (2007).
Milman, A. et al. Gender differences in patients with Brugada syndrome and arrhythmic events: data from a survey on arrhythmic events in 678 patients. Heart Rhythm 15, 1457–1465 (2018).
Li, Q., Wang, P., Ye, K. & Cai, H. Central role of SIAH inhibition in DCC-dependent cardioprotection provoked by netrin-1/NO. Proc. Natl. Acad. Sci. USA 112, 899–904 (2015).
Juang, J.-M. J. et al. Validation and disease risk assessment of previously reported genome-wide genetic variants associated with Brugada Syndrome. Circ. Genom. Precis. Med. 13, e002797 (2020).
Van Hemelrijck, M., Shanmugalingam, T., Bosco, C., Wulaningsih, W. & Rohrmann, S. The association between circulating IGF1, IGFBP3, and calcium: results from NHANES III. Endocr. Connect. 4, 187–195 (2015).
Ezzili, C., Otrubova, K. & Boger, D. L. Fatty acid amide signaling molecules. Bioorg. Med. Chem. Lett. 20, 5959–5968 (2010).
Riccio, A. et al. mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res. Mol. Brain Res. 109, 95–104 (2002).
Bröker-Lai, J. et al. Heteromeric channels formed by TRPC1, TRPC4 and TRPC5 define hippocampal synaptic transmission and working memory. EMBO J. 36, 2770–2789 (2017).
Du, S. L., Jia, Z. Q., Zhong, J. C. & Wang, L. F. TRPC5 in cardiovascular diseases. Rev. Cardiovasc. Med. 22, 127–135 (2021).
Liu, T., Zhao, H., Li, J., Korantzopoulos, P. & Li, G. Rosiglitazone attenuates atrial structural remodeling and atrial fibrillation promotion in alloxan-induced diabetic rabbits. Cardiovasc. Ther. 32, 178–183 (2014).
Launay, P. et al. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109, 397–407 (2002).
Nilius, B. et al. Voltage dependence of the Ca2+-activated cation channel TRPM4. J. Biol. Chem. 278, 30813–30820 (2003).
Tarifa, C. et al. Spatial distribution of calcium sparks determines their ability to induce afterdepolarizations in human atrial myocytes. JACC Basic Transl. Sci. 8, 1–15 (2023).
Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).
Vutthikraivit, W. et al. Worldwide prevalence of Brugada Syndrome: a systematic review and meta-analysis. Acta Cardiol. Sin. 34, 267–277 (2018).
Barc, J. et al. Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility. Nat. Genet. 54, 232–239 (2022).
Priori, S. G. et al. Executive summary: HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Europace 15, 1389–1406 (2013).
Priori, S. G. et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 36, 2793–2867 (2015).
Al-Khatib, S. M. et al. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: Executive Summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 138, e210–e271 (2018).
Verweij, N. et al. The genetic makeup of the electrocardiogram. Cell Syst. 11, 229–238.e225 (2020).
Nauffal, V. et al. Monogenic and polygenic contributions to QTc prolongation in the population. Circulation 145, 1524–1533 (2022).
Ferkingstad, E. et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 53, 1712–1721 (2021).
Sun, B. B. et al. Plasma proteomic associations with genetics and health in the UK Biobank. Nature 622, 329–338 (2023).
Võsa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021).
Chen, Y. et al. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat. Genet. 55, 44–53 (2023).
Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).
Barton, A. R., Sherman, M. A., Mukamel, R. E. & Loh, P.-R. Whole-exome imputation within UK Biobank powers rare coding variant association and fine-mapping analyses. Nat. Genet. 53, 1260–1269 (2021).
Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018).
Chen, J. et al. The trans-ancestral genomic architecture of glycemic traits. Nat. Genet. 53, 840–860 (2021).
Soranzo, N. et al. Common variants at 10 genomic loci influence hemoglobin A₁(C) levels via glycemic and nonglycemic pathways. Diabetes 59, 3229–3239 (2010).
Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).
Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 50, 524–537 (2018).
Nikpay, M. et al. A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 1121–1130 (2015).
Shah, S. et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat. Commun. 11, 163 (2020).
Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).
Pattaro, C. et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat. Commun. 7, 10023 (2016).
Forgetta, V. et al. Rare genetic variants of large effect influence risk of type 1 diabetes. Diabetes 69, 784–795 (2020).
Xue, A. et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat. Commun. 9, 2941 (2018).
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
Hemani, G., Tilling, K. & Davey Smith, G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 13, e1007081 (2017).
Skrivankova, V. W. et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR Statement. JAMA 326, 1614–1621 (2021).
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).
Tofighi, D. & MacKinnon, D. P. RMediation: an R package for mediation analysis confidence intervals. Behav. Res. Methods 43, 692–700 (2011).
Du, L. et al. Dockey: a modern integrated tool for large-scale molecular docking and virtual screening. Brief. Bioinform. 24, bbad047 (2023).
Zhang, Q. et al. Increase in CO(2) levels by upregulating late sodium current is proarrhythmic in the heart. Heart Rhythm 16, 1098–1106 (2019).
Tomek, J., Nieves-Cintron, M., Navedo, M. F., Ko, C. Y. & Bers, D. M. SparkMaster 2: a new software for automatic analysis of calcium spark data. Circ. Res 133, 450–462 (2023).
Tomek, J. et al. Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block. eLife 8, e48890 (2019).
Xu, H. Code for “N-palmitoyl glycine differentially modulates TRPM4 and TRPC5 and is causally linked to Brugada syndrome”. Zenodo, https://doi.org/10.5281/zenodo.17536545 (2025).