Population structure in a fungal human pathogen is potentially linked to pathogenicity

  • Rudramurthy, S. M., Paul, R. A., Chakrabarti, A., Mouton, J. W. & Meis, J. F. Invasive aspergillosis by Aspergillus flavus: epidemiology, diagnosis, antifungal resistance, and management. J. Fungi 5, 55 (2019).

    CAS 

    Google Scholar 

  • Bongomin, F., Gago, S., Oladele, R. O. & Denning, D. W. Global and multi-national prevalence of fungal diseases—estimate precision. J. Fungi 3, 57 (2017).

    Google Scholar 

  • Chong, W. H. & Neu, K. P. Incidence, diagnosis and outcomes of COVID-19-associated pulmonary aspergillosis (CAPA): a systematic review. J. Hosp. Infect. 113, 115–129 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nasir, N., Farooqi, J., Mahmood, S. F. & Jabeen, K. COVID-19-associated pulmonary aspergillosis (CAPA) in patients admitted with severe COVID-19 pneumonia: an observational study from Pakistan. Mycoses 63, 766–770 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schauwvlieghe, A. F. A. D. et al. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: a retrospective cohort study. Lancet Respir. Med. 6, 782–792 (2018).

    PubMed 

    Google Scholar 

  • Devoto, T. B. et al. Molecular epidemiology of Aspergillus species and other moulds in respiratory samples from Argentinean patients with cystic fibrosis. Med. Mycol. 58, 867–873 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Truda, V. S. S. et al. A contemporary investigation of burden and natural history of aspergillosis in people living with HIV/AIDS. Mycoses 66, 632–638 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Denning, D. W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 24, e428−e438 (2024).

  • Ghosh, A. K. et al. Fungal keratitis in North India: spectrum of agents, risk factors and treatment. Mycopathologia 181, 843–850 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Brown, L., Leck, A. K., Gichangi, M., Burton, M. J. & Denning, D. W. The global incidence and diagnosis of fungal keratitis. Lancet Infect. Dis. 21, e49–e57 (2021).

    PubMed 

    Google Scholar 

  • Gheith, S. et al. Characteristics of invasive aspergillosis in neutropenic haematology patients (Sousse, Tunisia). Mycopathologia 177, 281–289 (2014).

    PubMed 

    Google Scholar 

  • Sarigüzel, F. M. et al. Molecular epidemiology and antifungal susceptibilities of Aspergillus species isolated from patients with invasive aspergillosis. Rev. Assoc. Med. Bras. 69, 44–50 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dabas, Y. et al. Epidemiology and antifungal susceptibility patterns of invasive fungal infections (IFIs) in India: a prospective observational study. J. Fungi 8, 33 (2021).

    Google Scholar 

  • Fedorova, N. D. et al. Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4, e10000046 (2008).

    Google Scholar 

  • Rokas, A. Evolution of the human pathogenic lifestyle in fungi. Nat. Microbiol. 7, 607–619 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steinbach, W. J. et al. Clinical epidemiology of 960 patients with invasive aspergillosis from the PATH alliance registry. J. Infect. 65, 453–464 (2012).

    PubMed 

    Google Scholar 

  • Walther, G. et al. Eye infections caused by filamentous fungi: spectrum and antifungal susceptibility of the prevailing agents in Germany. J. fungi 7, 511 (2021).

    CAS 

    Google Scholar 

  • Hedayati, M. T., Pasqualotto, A. C., Warn, P. A., Bowyer, P. & Denning, D. W. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology 153, 1677–1692 (2007).

  • Eaton, D. L. & Gallagher, E. P. Mechanisms of aflatoxin carcinogenesis. Annu. Rev. Pharm. Toxicol. 34, 135–172 (1994).

    CAS 

    Google Scholar 

  • Drott, M. T. et al. Microevolution in the pansecondary metabolome of Aspergillus flavus and its potential macroevolutionary implications for filamentous fungi. Proc. Natl. Acad. Sci. USA 118, e2021683118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raffa, N. & Keller, N. P. A call to arms: Mustering secondary metabolites for success and survival of an opportunistic pathogen. PLoS Pathog. 15, e1007606 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vidal-García, M. et al. Production of the invasive aspergillosis biomarker bis (methylthio) gliotoxin within the genus Aspergillus: in vitro and in vivo metabolite quantification and genomic analysis. Front Microbiol. 9, 1246 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dowd, P. F. Synergism of aflatoxin B1 toxicity with the co-occurring fungal metabolite kojic acid to two caterpillars. Entomol. Exp. Appl. 47, 69−71 (1988).

  • Lan, H. et al. Investigation of Aspergillus flavus in animal virulence. Toxicon 145, 40–47 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Hatmaker, E. A. et al. Genomic and phenotypic trait variation of the opportunistic human pathogen Aspergillus flavus and its close relatives. Microbiol. Spectr. 10, e03069-22 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, P.-K., Ehrlich, K. C. & Hua, S.-S. T. Cladal relatedness among Aspergillus oryzae isolates and Aspergillus flavus S and L morphotype isolates. Int. J. Food Microbiol. 108, 172–177 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Singh, P., Mehl, H. L., Orbach, M. J., Callicott, K. A. & Cotty, P. J. Genetic diversity of Aspergillus flavus associated with chili in Nigeria and identification of haplotypes with potential in aflatoxin mitigation. Plant Dis. 106, 1818–1825 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Acur, A. et al. Genetic diversity of aflatoxin-producing Aspergillus flavus isolated from groundnuts in selected agro-ecological zones of Uganda. BMC Microbiol. 20, 252 (2019).

  • Drott, M. T., Fessler, L. M. & Milgroom, M. G. Population subdivision and the frequency of aflatoxigenic isolates in Aspergillus flavus in the United States. Phytopathology 109, 878–886 (2019).

    PubMed 

    Google Scholar 

  • Cherif, G. et al. Aspergillus flavus genetic structure at a turkey farm. Vet. Med Sci. 9, 234–241 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Choi, M. J. et al. Microsatellite typing and resistance mechanism analysis of voriconazole-resistant Aspergillus flavus isolates in South Korean hospitals. Antimicrob. Agents Chemother. 63, 10–1128 (2019).

    Google Scholar 

  • Drott, M. T. et al. The frequency of sex: population genomics reveals differences in recombination and population structure of the aflatoxin-producing fungus Aspergillus flavus. mBio 11, 1–13 (2020).

    Google Scholar 

  • Buil, J. B. et al. Genetic and phenotypic characterization of in-host developed azole-resistant Aspergillus flavus isolates. J. Fungi 7, 164 (2021).

    CAS 

    Google Scholar 

  • Toyotome, T. et al. Comparative genome analysis of Aspergillus flavus clinically isolated in Japan. DNA Res. 26, 95–103 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Croll, D. & McDonald, B. A. The accessory genome as a cradle for adaptive evolution in pathogens. PLoS Pathog. 8, e1002608 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCarthy, C. G. P. & Fitzpatrick, D. A. Pan-genome analyses of model fungal species. Micro. Genom. 5, e000243 (2019).

    Google Scholar 

  • Barber, A. E. et al. Aspergillus fumigatus pan-genome analysis identifies genetic variants associated with human infection. Nat. Microbiol. 6, 1526–1536 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Lofgren, L. A., Ross, B. S., Cramer, R. A. & Stajich, J. E. The pan-genome of Aspergillus fumigatus provides a high-resolution view of its population structure revealing high levels of lineage-specific diversity driven by recombination. PLoS Biol. 20, e3001890 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horta, M. A. C. et al. Examination of genome-wide ortholog variation in clinical and environmental isolates of the fungal pathogen Aspergillus fumigatus. mBio 13, e01519-22 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wright, S. Isolation by distance. Genetics 28, 114 (1943).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fritz, S. A. & Purvis, A. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv. Biol. 24, 1042–1051 (2010).

    PubMed 

    Google Scholar 

  • Weaver, M. A., Mack, B. M. & Gilbert, M. K. Genome sequences of 20 georeferenced Aspergillus flavus isolates. Microbiol. Resour. Announc. 8, e01718–e01718 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yin, G. et al. Genome sequence and comparative analyses of atoxigenic Aspergillus flavus WRRL 1519. Mycologia 110, 482–493 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Arias, R. S. et al. Sixteen draft genome sequences representing the genetic diversity of Aspergillus flavus and Aspergillus parasiticus colonizing peanut seeds in Ethiopia. Microbiol. Resour. Announc. 9, 10–1128 (2020).

    Google Scholar 

  • Ajmal, M. et al. Characterization of 260 isolates of Aspergillus section Flavi obtained from sesame seeds in Punjab, Pakistan. Toxins14, 117 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pennerman, K. K., Yin, G., Bennett, J. W. & Hua, S.-S. T. Aspergillus flavus NRRL 35739, a poor biocontrol agent, may have increased relative expression of stress response genes. J. Fungi 5, 53 (2019).

    CAS 

    Google Scholar 

  • Palmer, J. M. & Stajich, J. E. Funannotate v1. 8.1: eukaryotic genome annotation. Zenodo https://doi.org/10.3389/fmicb.2019.01013 (2020).

  • Hatmaker, E. A. et al. Revised transcriptome-based gene annotation for Aspergillus flavus strain NRRL 3357. Microbiol. Resour. Announc. 9, e01155−20 (2020).

  • Fassler, J. S. & West, A. H. Fungal Skn7 stress responses and their relationship to virulence. Eukaryot. Cell 10, 156–167 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • St Leger, R. J., Screen, S. E. & Shams-Pirzadeh, B. Lack of host specialization in Aspergillus flavus. Appl Environ. Microbiol. 66, 320–324 (2000).

    ADS 

    Google Scholar 

  • Desjardins, C. A. et al. Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans. Genome Res. 27, 1207–1219 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paulussen, C. et al. Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Micro. Biotechnol. 10, 296–322 (2017).

    Google Scholar 

  • Freese, J. & Beyhan, S. Genetic diversity of human fungal pathogens. Curr. Clin. Microbiol. Rep. 10, 17–28 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • de Vries, R. P. & Visser, J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. Rev. 65, 497–522 (2001).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Crawford, A. & Wilson, D. Essential metals at the host–pathogen interface: nutritional immunity and micronutrient assimilation by human fungal pathogens. FEMS Yeast Res. 15, fov071 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Spikes, S. et al. Gliotoxin production in Aspergillus fumigatus contributes to host-specific differences in virulence. J. Infect. Dis. 197, 479–486 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Yu, J. et al. Tight control of mycotoxin biosynthesis gene expression in Aspergillus flavus by temperature as revealed by RNA-Seq. FEMS Microbiol. Lett. 322, 145–149 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Skerker, J. M. et al. Chromosome assembled and annotated genome sequence of Aspergillus flavus NRRL 3357. G3 11, jkab213 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ben, L. & Salzberg, S. L. Bowtie2. Nat. Methods 9, 357–359 (2013).

    Google Scholar 

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • McKenna, A. et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 1–15 (2010).

    Google Scholar 

  • de Jong, M. J., de Jong, J. F., Hoelzel, A. R. & Janke, A. SambaR: An R package for fast, easy and reproducible population-genetic analyses of biallelic SNP data sets. Mol. Ecol. Resour. 21, 1369–1379 (2021).

    PubMed 

    Google Scholar 

  • Frichot, E. & François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).

    Google Scholar 

  • Alexander, D. H. & Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform. 12, 1–6 (2011).

    Google Scholar 

  • Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. & François, O. Fast and efficient estimation of individual ancestry coefficients. Genetics 196, 973–983 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nei, M. Genetic distance between populations. Am. Nat. 106, 283–292 (1972).

    Google Scholar 

  • Paradis, E. pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).

    CAS 
    PubMed 

    Google Scholar 

  • Gruber, B., Unmack, P. J., Berry, O. F. & Georges, A. dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 18, 691–699 (2018).

    PubMed 

    Google Scholar 

  • Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Letunic, I. & Bork, P. Interactive tree Of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Orme, D. et al. The caper package: comparative analysis of phylogenetics and evolution in R. R. Package Version 5, 1–36 (2013).

    Google Scholar 

  • Gebru, S. T. et al. Draft genome sequences of 20 Aspergillus flavus isolates from corn kernels and cornfield soils in louisiana. Microbiol Resour. Announc 9, e00826–20 (2022).

    Google Scholar 

  • Bankevich, A. et al. SPAdes: A New genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. https://www.repeatmasker.org/faq.html (2025).

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    PubMed 

    Google Scholar 

  • Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, L. et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 47, W52–W58 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, P. et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 30, 1236−40 (2014).

  • Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinformatics 10, 421 (2009).

  • Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European molecular biology open software suite. Trends Genet. 16, 276–277 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Blin, K. et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 1–14 (2019).

    Google Scholar 

  • Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Google Scholar 

  • Oksanen, J. et al. Package ‘Vegan’. Community Ecology Package, Version. https://cran.r-project.org/web/packages/vegan/vegan.pdf (2019).

  • Drost, H.-G. Philentropy: information theory and distance quantification with R. J. Open Source Softw. 3, 765 (2018).

    ADS 

    Google Scholar 

  • Ginestet, C. ggplot2: Elegant graphics for data analysis. J. R. Stat. Soc. Ser. A Stat. Soc. 174, 245–246 (2011).

    Google Scholar 

  • Snipen, L. & Liland, K. H. micropan: an R-package for microbial pan-genomics. BMC Bioinforma. 16, 1–8 (2015).

    CAS 

    Google Scholar 

  • Symonds, M. R. E. & Blomberg, S. P. A primer on phylogenetic generalised least squares.In Modern phylogenetic comparative methods and their application in evolutionary biology: concepts and practice Garamszegi, L.) 105–130 (Springer, 2014).

  • Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading