Rudramurthy, S. M., Paul, R. A., Chakrabarti, A., Mouton, J. W. & Meis, J. F. Invasive aspergillosis by Aspergillus flavus: epidemiology, diagnosis, antifungal resistance, and management. J. Fungi 5, 55 (2019).
Google Scholar
Bongomin, F., Gago, S., Oladele, R. O. & Denning, D. W. Global and multi-national prevalence of fungal diseases—estimate precision. J. Fungi 3, 57 (2017).
Chong, W. H. & Neu, K. P. Incidence, diagnosis and outcomes of COVID-19-associated pulmonary aspergillosis (CAPA): a systematic review. J. Hosp. Infect. 113, 115–129 (2021).
Google Scholar
Nasir, N., Farooqi, J., Mahmood, S. F. & Jabeen, K. COVID-19-associated pulmonary aspergillosis (CAPA) in patients admitted with severe COVID-19 pneumonia: an observational study from Pakistan. Mycoses 63, 766–770 (2020).
Google Scholar
Schauwvlieghe, A. F. A. D. et al. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: a retrospective cohort study. Lancet Respir. Med. 6, 782–792 (2018).
Google Scholar
Devoto, T. B. et al. Molecular epidemiology of Aspergillus species and other moulds in respiratory samples from Argentinean patients with cystic fibrosis. Med. Mycol. 58, 867–873 (2020).
Google Scholar
Truda, V. S. S. et al. A contemporary investigation of burden and natural history of aspergillosis in people living with HIV/AIDS. Mycoses 66, 632–638 (2023).
Google Scholar
Denning, D. W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 24, e428−e438 (2024).
Ghosh, A. K. et al. Fungal keratitis in North India: spectrum of agents, risk factors and treatment. Mycopathologia 181, 843–850 (2016).
Google Scholar
Brown, L., Leck, A. K., Gichangi, M., Burton, M. J. & Denning, D. W. The global incidence and diagnosis of fungal keratitis. Lancet Infect. Dis. 21, e49–e57 (2021).
Google Scholar
Gheith, S. et al. Characteristics of invasive aspergillosis in neutropenic haematology patients (Sousse, Tunisia). Mycopathologia 177, 281–289 (2014).
Google Scholar
Sarigüzel, F. M. et al. Molecular epidemiology and antifungal susceptibilities of Aspergillus species isolated from patients with invasive aspergillosis. Rev. Assoc. Med. Bras. 69, 44–50 (2023).
Google Scholar
Dabas, Y. et al. Epidemiology and antifungal susceptibility patterns of invasive fungal infections (IFIs) in India: a prospective observational study. J. Fungi 8, 33 (2021).
Fedorova, N. D. et al. Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4, e10000046 (2008).
Rokas, A. Evolution of the human pathogenic lifestyle in fungi. Nat. Microbiol. 7, 607–619 (2022).
Google Scholar
Steinbach, W. J. et al. Clinical epidemiology of 960 patients with invasive aspergillosis from the PATH alliance registry. J. Infect. 65, 453–464 (2012).
Google Scholar
Walther, G. et al. Eye infections caused by filamentous fungi: spectrum and antifungal susceptibility of the prevailing agents in Germany. J. fungi 7, 511 (2021).
Google Scholar
Hedayati, M. T., Pasqualotto, A. C., Warn, P. A., Bowyer, P. & Denning, D. W. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology 153, 1677–1692 (2007).
Eaton, D. L. & Gallagher, E. P. Mechanisms of aflatoxin carcinogenesis. Annu. Rev. Pharm. Toxicol. 34, 135–172 (1994).
Google Scholar
Drott, M. T. et al. Microevolution in the pansecondary metabolome of Aspergillus flavus and its potential macroevolutionary implications for filamentous fungi. Proc. Natl. Acad. Sci. USA 118, e2021683118 (2021).
Google Scholar
Raffa, N. & Keller, N. P. A call to arms: Mustering secondary metabolites for success and survival of an opportunistic pathogen. PLoS Pathog. 15, e1007606 (2019).
Google Scholar
Vidal-García, M. et al. Production of the invasive aspergillosis biomarker bis (methylthio) gliotoxin within the genus Aspergillus: in vitro and in vivo metabolite quantification and genomic analysis. Front Microbiol. 9, 1246 (2018).
Google Scholar
Dowd, P. F. Synergism of aflatoxin B1 toxicity with the co-occurring fungal metabolite kojic acid to two caterpillars. Entomol. Exp. Appl. 47, 69−71 (1988).
Lan, H. et al. Investigation of Aspergillus flavus in animal virulence. Toxicon 145, 40–47 (2018).
Google Scholar
Hatmaker, E. A. et al. Genomic and phenotypic trait variation of the opportunistic human pathogen Aspergillus flavus and its close relatives. Microbiol. Spectr. 10, e03069-22 (2022).
Google Scholar
Chang, P.-K., Ehrlich, K. C. & Hua, S.-S. T. Cladal relatedness among Aspergillus oryzae isolates and Aspergillus flavus S and L morphotype isolates. Int. J. Food Microbiol. 108, 172–177 (2006).
Google Scholar
Singh, P., Mehl, H. L., Orbach, M. J., Callicott, K. A. & Cotty, P. J. Genetic diversity of Aspergillus flavus associated with chili in Nigeria and identification of haplotypes with potential in aflatoxin mitigation. Plant Dis. 106, 1818–1825 (2022).
Google Scholar
Acur, A. et al. Genetic diversity of aflatoxin-producing Aspergillus flavus isolated from groundnuts in selected agro-ecological zones of Uganda. BMC Microbiol. 20, 252 (2019).
Drott, M. T., Fessler, L. M. & Milgroom, M. G. Population subdivision and the frequency of aflatoxigenic isolates in Aspergillus flavus in the United States. Phytopathology 109, 878–886 (2019).
Google Scholar
Cherif, G. et al. Aspergillus flavus genetic structure at a turkey farm. Vet. Med Sci. 9, 234–241 (2023).
Google Scholar
Choi, M. J. et al. Microsatellite typing and resistance mechanism analysis of voriconazole-resistant Aspergillus flavus isolates in South Korean hospitals. Antimicrob. Agents Chemother. 63, 10–1128 (2019).
Drott, M. T. et al. The frequency of sex: population genomics reveals differences in recombination and population structure of the aflatoxin-producing fungus Aspergillus flavus. mBio 11, 1–13 (2020).
Buil, J. B. et al. Genetic and phenotypic characterization of in-host developed azole-resistant Aspergillus flavus isolates. J. Fungi 7, 164 (2021).
Google Scholar
Toyotome, T. et al. Comparative genome analysis of Aspergillus flavus clinically isolated in Japan. DNA Res. 26, 95–103 (2019).
Google Scholar
Croll, D. & McDonald, B. A. The accessory genome as a cradle for adaptive evolution in pathogens. PLoS Pathog. 8, e1002608 (2012).
Google Scholar
McCarthy, C. G. P. & Fitzpatrick, D. A. Pan-genome analyses of model fungal species. Micro. Genom. 5, e000243 (2019).
Barber, A. E. et al. Aspergillus fumigatus pan-genome analysis identifies genetic variants associated with human infection. Nat. Microbiol. 6, 1526–1536 (2021).
Google Scholar
Lofgren, L. A., Ross, B. S., Cramer, R. A. & Stajich, J. E. The pan-genome of Aspergillus fumigatus provides a high-resolution view of its population structure revealing high levels of lineage-specific diversity driven by recombination. PLoS Biol. 20, e3001890 (2022).
Google Scholar
Horta, M. A. C. et al. Examination of genome-wide ortholog variation in clinical and environmental isolates of the fungal pathogen Aspergillus fumigatus. mBio 13, e01519-22 (2022).
Google Scholar
Wright, S. Isolation by distance. Genetics 28, 114 (1943).
Google Scholar
Fritz, S. A. & Purvis, A. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv. Biol. 24, 1042–1051 (2010).
Google Scholar
Weaver, M. A., Mack, B. M. & Gilbert, M. K. Genome sequences of 20 georeferenced Aspergillus flavus isolates. Microbiol. Resour. Announc. 8, e01718–e01718 (2019).
Google Scholar
Yin, G. et al. Genome sequence and comparative analyses of atoxigenic Aspergillus flavus WRRL 1519. Mycologia 110, 482–493 (2018).
Google Scholar
Arias, R. S. et al. Sixteen draft genome sequences representing the genetic diversity of Aspergillus flavus and Aspergillus parasiticus colonizing peanut seeds in Ethiopia. Microbiol. Resour. Announc. 9, 10–1128 (2020).
Ajmal, M. et al. Characterization of 260 isolates of Aspergillus section Flavi obtained from sesame seeds in Punjab, Pakistan. Toxins14, 117 (2022).
Google Scholar
Pennerman, K. K., Yin, G., Bennett, J. W. & Hua, S.-S. T. Aspergillus flavus NRRL 35739, a poor biocontrol agent, may have increased relative expression of stress response genes. J. Fungi 5, 53 (2019).
Google Scholar
Palmer, J. M. & Stajich, J. E. Funannotate v1. 8.1: eukaryotic genome annotation. Zenodo https://doi.org/10.3389/fmicb.2019.01013 (2020).
Hatmaker, E. A. et al. Revised transcriptome-based gene annotation for Aspergillus flavus strain NRRL 3357. Microbiol. Resour. Announc. 9, e01155−20 (2020).
Fassler, J. S. & West, A. H. Fungal Skn7 stress responses and their relationship to virulence. Eukaryot. Cell 10, 156–167 (2011).
Google Scholar
St Leger, R. J., Screen, S. E. & Shams-Pirzadeh, B. Lack of host specialization in Aspergillus flavus. Appl Environ. Microbiol. 66, 320–324 (2000).
Google Scholar
Desjardins, C. A. et al. Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans. Genome Res. 27, 1207–1219 (2017).
Google Scholar
Paulussen, C. et al. Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Micro. Biotechnol. 10, 296–322 (2017).
Freese, J. & Beyhan, S. Genetic diversity of human fungal pathogens. Curr. Clin. Microbiol. Rep. 10, 17–28 (2023).
Google Scholar
de Vries, R. P. & Visser, J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. Rev. 65, 497–522 (2001).
Google Scholar
Crawford, A. & Wilson, D. Essential metals at the host–pathogen interface: nutritional immunity and micronutrient assimilation by human fungal pathogens. FEMS Yeast Res. 15, fov071 (2015).
Google Scholar
Spikes, S. et al. Gliotoxin production in Aspergillus fumigatus contributes to host-specific differences in virulence. J. Infect. Dis. 197, 479–486 (2008).
Google Scholar
Yu, J. et al. Tight control of mycotoxin biosynthesis gene expression in Aspergillus flavus by temperature as revealed by RNA-Seq. FEMS Microbiol. Lett. 322, 145–149 (2011).
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Google Scholar
Skerker, J. M. et al. Chromosome assembled and annotated genome sequence of Aspergillus flavus NRRL 3357. G3 11, jkab213 (2021).
Google Scholar
Ben, L. & Salzberg, S. L. Bowtie2. Nat. Methods 9, 357–359 (2013).
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
Google Scholar
McKenna, A. et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
Google Scholar
Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).
Google Scholar
Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).
Google Scholar
Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 1–15 (2010).
de Jong, M. J., de Jong, J. F., Hoelzel, A. R. & Janke, A. SambaR: An R package for fast, easy and reproducible population-genetic analyses of biallelic SNP data sets. Mol. Ecol. Resour. 21, 1369–1379 (2021).
Google Scholar
Frichot, E. & François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).
Alexander, D. H. & Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform. 12, 1–6 (2011).
Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. & François, O. Fast and efficient estimation of individual ancestry coefficients. Genetics 196, 973–983 (2014).
Google Scholar
Nei, M. Genetic distance between populations. Am. Nat. 106, 283–292 (1972).
Paradis, E. pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420 (2010).
Google Scholar
Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).
Google Scholar
Gruber, B., Unmack, P. J., Berry, O. F. & Georges, A. dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 18, 691–699 (2018).
Google Scholar
Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).
Google Scholar
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
Google Scholar
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
Google Scholar
Letunic, I. & Bork, P. Interactive tree Of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).
Google Scholar
Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006).
Google Scholar
Orme, D. et al. The caper package: comparative analysis of phylogenetics and evolution in R. R. Package Version 5, 1–36 (2013).
Gebru, S. T. et al. Draft genome sequences of 20 Aspergillus flavus isolates from corn kernels and cornfield soils in louisiana. Microbiol Resour. Announc 9, e00826–20 (2022).
Bankevich, A. et al. SPAdes: A New genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
Google Scholar
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. https://www.repeatmasker.org/faq.html (2025).
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
Google Scholar
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).
Google Scholar
Xu, L. et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 47, W52–W58 (2019).
Google Scholar
Jones, P. et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 30, 1236−40 (2014).
Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinformatics 10, 421 (2009).
Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European molecular biology open software suite. Trends Genet. 16, 276–277 (2000).
Google Scholar
Blin, K. et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).
Google Scholar
Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 1–14 (2019).
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).
Google Scholar
Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
Oksanen, J. et al. Package ‘Vegan’. Community Ecology Package, Version. https://cran.r-project.org/web/packages/vegan/vegan.pdf (2019).
Drost, H.-G. Philentropy: information theory and distance quantification with R. J. Open Source Softw. 3, 765 (2018).
Google Scholar
Ginestet, C. ggplot2: Elegant graphics for data analysis. J. R. Stat. Soc. Ser. A Stat. Soc. 174, 245–246 (2011).
Snipen, L. & Liland, K. H. micropan: an R-package for microbial pan-genomics. BMC Bioinforma. 16, 1–8 (2015).
Google Scholar
Symonds, M. R. E. & Blomberg, S. P. A primer on phylogenetic generalised least squares.In Modern phylogenetic comparative methods and their application in evolutionary biology: concepts and practice Garamszegi, L.) 105–130 (Springer, 2014).
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
Google Scholar