A 19-Year-Old Chemist Turned a Perfume Ingredient Into a Lifesaving Drug

“Hearst Magazines and Yahoo may earn commission or revenue on some items through these links.”

Here’s what you’ll learn when you read this story:

  • 19-year-old Adam Kovalčík has created a stronger—and much cheaper—version of a powerful emerging medication known as galidesivir.

  • Instead of starting out with the sugar, which is normally used in the production of this drug, he rebuilt the formula with a base molecule of corn alcohol.

  • This change increases efficiency and cuts costs by reducing production steps and using inexpensive materials.


We live in the aftermath of a global pandemic. Leftover COVID-19 trauma and world news updates reporting outbreaks of Zika or Ebola have made us apprehensive about viruses, and most of us have been vigilant about being vaccinated and re-vaccinated. But what about when preventative measures aren’t enough? What happens if a virus invades us before we can get to a vaccine?

Adam Kovalčík is only 19, but the high school senior at Gymnázium Nové Zámky in Slovakia he has created something beyond what anyone would expect of someone his age. He has managed to turn an alcohol derived from corncobs and husks into galidesivir, an antiviral drug that targets RNA viruses like Zika and Ebola. Generating the drug this way, in his words, “could potentially save tens of thousands of lives.” Kovalčík recently won the $100,000 Genrge D. Yancopoulos Innovator Award at the 2025 Regeneration International Science and Engineering Fair (ISEF).

Galidesivir is the human-synthesized version of adenosine, which itself is a nucleoside—the components of nuclei acids. Among other biochemical functions, they are involved in storing and transferring genetic information. Adenosine is also an inhibitor of the enzyme RNA polymerase, which interferes with the function of certain enzymes in RNA viruses. The adenosine produced by our our bodies can inhibit RNA viruses (which clone their genomes in order to keep producing infinite copies of themselves), but it usually needs a boost when faced with potentially fatal pathogens like Ebola and Zika. This is where galidesivir comes in.

Though not yet approved by the FDA, in vitro and animal tests have shown that galidesivir increases survival rates and has few side effects, which is why it is also being considered for treating COVID-19. It binds to the molecules that viruses use to clone themselves, making that function no longer accessible to the virus. The problem with galidesivir is that it costs $75 per gram (0.035 ounce) to produce, making the cost of a future prescription almost unfathomable, especially considering the state of healthcare. Kovalčík’s process could bring that cost down to $12.50 per gram.

Why is galidesivir so expensive? There is an extra step in the production of the most powerful form of this drug that ultimately affects the cost. When drugs are being developed, unwanted materials—such as variants of that drug—often end up in the first batch. These variants, or stereoisomers, have the same molecular formula as the finished drug, but their atoms form molecules in different arrangements. Kovalčík wanted to synthesize cis-OH galidesivir because it is 20 times stronger than its stereoisomer trans-OH galidesivir, so the trans version needs to be separated out to isolate the cis version. Separation involves extras steps that take extra time and cost more.

Kovalčík used his experience working on perfumes in a chemistry lab to figure out how to synthesize galidesivir in a different way. He needed a starter molecule—typically, sugar is used for galidesivir, but sugar would just repeat the existing process, which was not efficient enough. Perfume taught Kovalčík that some scent compounds used furfural alcohol (corn alcohol) as a starter molecule, so he rebuilt the drug using it as the replacement starter molecule and was able to reduce the production steps from 15 to 10. Using corn alcohol also lowered the cost.

This production method is not restricted to galidevisir—it could create other antivirals. Kovalčík used computer models to design new molecules that were supposed to operate in the same way as galidesivir, and one molecule he came up with (ADK-98) had the potential to be even more effective. The furfural alcohol distilled from corn would be the base for these future drugs.

Kovalčík plans to continue refining his research and development process for this and other potential antivirals in collaboration with the Slovak University of Technology in Bratislava.

And to think, this all started with a realization that came from molecules in perfume. Think about that with your next spritz of Dior Homme or Chanel No. 5.

You Might Also Like

Continue Reading