Assessment of Chlorella vulgaris as a biological control agent against tortoise tick Hyalomma aegyptium (Acari: Ixodidae) in Egypt

  • Jongejan, F. & Uilenberg, G. The global importance of ticks. Parasitology 129 (Suppl), S3–S14. https://doi.org/10.1017/s0031182004005967 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Guglielmone, A. A. et al. The Hard Ticks of the World (Acari: Ixodida: Ixodidae) 738 (Springer, 2014). https://doi.org/10.1007/978-94-007-7497-1.

  • Abouelhassan, E. M. et al. Molecular identification and morphological variations of Amblyomma lepidum imported to egypt, with notes about its potential distribution under climate change. Parasitol. Res. 123 (7), 276. https://doi.org/10.1007/s00436-024-08284-0 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, K. S. Current challenges in the development of vaccines and drugs against emerging vector-borne diseases. Curr. Med. Chem. 26 (16), 2974–2986. https://doi.org/10.2174/0929867325666181105121146 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Okely, M., Anan, R., Gad-Allah, S. & Samy, A. M. Hard ticks (Acari: Ixodidae) infesting domestic animals in egypt: diagnostic characters and a taxonomic key to the collected species. Med. Vet. Entomol. 35 (3), 333–351. https://doi.org/10.1111/mve.12502 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sándor, A. D., Mihalca, A. D., Domssa, C., Péter, A. & Hornok, S. Argasid ticks of Palearctic bats: distribution, host selection, and zoonotic importance. Front. Veterinary Sci. 8, 684737. https://doi.org/10.3389/fvets.2021.684737 (2021).

    Article 

    Google Scholar 

  • Achuthkumar, A. et al. Transcriptome profiling of Rhipicephalus annulatus reveals differential gene expression of metabolic detoxifying enzymes in response to acaricide treatment. Biomedicines 11 (5), 1369. https://doi.org/10.3390/biomedicines11051369 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amrutha, B. M. et al. Morphological and molecular characterization of Rhipicephalus Microplus and Rhipicephalus annulatus from selected States of Southern India. Ticks Tick-Borne Dis. 14 (2), 102086. https://doi.org/10.1016/j.ttbdis.2022.102086 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Shah, S. Z. et al. Epidemiology, pathogenesis, and control of a tick-borne disease- Kyasanur forest disease: current status and future directions. Front. Cell. Infect. Microbiol. 8, 149. https://doi.org/10.3389/fcimb.2018.00149 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Okely, M., Anan, R., Gad-Allah, S. & Samy, A. M. Mapping the environmental suitability of etiological agent and tick vectors of Crimean-Congo hemorrhagic fever. Acta Trop. 203, 105319. https://doi.org/10.1016/j.actatropica.2019.105319 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ibrahium, S. M. et al. Preparation of geranium oil formulations effective for control of phenotypic resistant cattle tick Rhipicephalus annulatus. Sci. Rep. 12, 11693. https://doi.org/10.1038/s41598-022-14661-5 (2022a).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shuaib, Y. A. et al. Ixodid tick species and two tick-borne pathogens in three areas in the Sudan. Parasitol. Res. 119, 385–394. https://doi.org/10.1007/s00436-019-06458-9 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Mihalca, A. D., Gherman, C. M. & Cozma, V. Coendangered hard-ticks: threatened or threatening? Parasites Vectors. 4, 1–7. https://doi.org/10.1186/1756-3305-4-71 (2011).

    Article 

    Google Scholar 

  • Hoogstraal, H. & Kaiser, M. N. Some host relationships of the tortoise tick, Hyalomma (Hyalommasta) aegyptium (L.) (Ixodoidea, Ixodidae) in Turkey. Ann. Entomol. Soc. Am. 53, 457–458. https://doi.org/10.1093/aesa/53.4.457 (1960).

  • Apanaskevich, D. A. Towards a diagnostic view of Hyalomma (Hyalomma) aegyptium. Ixodidae) Parazitologiia. 37, 47–59 (2003). http://europepmc.org/abstract/MED/12677670Acari.

    CAS 
    PubMed 

    Google Scholar 

  • Kaiser, M. N. & Hoogstraal, H. The Hyalomma ticks (Ixodoidea, Ixodidade) of Afghanistan. J. Parasitol. 49, 130–139. https://doi.org/10.2307/3275691 (1963).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Široký, P., Petrželková, K. J., Kamler, M., Mihalca, A. D. & Modry, D. Hyalomma aegyptium as dominant tick in tortoises of the genus Testudo in Balkan countries, with notes on its host preferences. Exp. Appl. Acarol. 40, 279–290. https://doi.org/10.1007/s10493-006-9036-z (2005).

    Article 

    Google Scholar 

  • Tavassoli, E., Rahimi-Asiabi, N. & Tavassoli, M. Hyalomma aegyptium on spur-thighed tortoise (Testudo graeca) in urmia region West azerbaijan, Iran. Iran. J. Parasitol. 2 (2), 40–47 (2007). https://api.semanticscholar.org/CorpusID:86748072

    Google Scholar 

  • Iqbal, Z., Kayani, A. R., Akhter, A. & Qayyum, M. Prevalence and distribution of hard ticks and their associated risk factors in sheep and goats from four agro-climatic zones of Khyber Pakhtunkhwa (KPK), Pakistan. International J. Environ. Res. Public. Health. 19 (18), 11759. https://doi.org/10.3390/ijerph191811759 (2022).

    Article 

    Google Scholar 

  • Bitam, I., Kernif, T., Harrat, Z., Parola, P. & Raoult, D. First detection of Rickettsia aeschlimannii in Hyalomma aegyptium from Algeria. Eur. Soc. Clin. Microbiol. Infect. Dis. CMI. 15 (2), 253–254. https://doi.org/10.1111/j.1469-0691.2008.02274.x (2009).

    Article 

    Google Scholar 

  • Paștiu, A. I. et al. Zoonotic pathogens associated with Hyalomma aegyptium in endangered tortoises: evidence for host-switching behaviour in ticks? Parasites Vectors. 5, 301. https://doi.org/10.1186/1756-3305-5-301 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalmár, Z. et al. Transstadial transmission of Borrelia turcica in Hyalomma aegyptium ticks. PLoS ONE. 10 (2), e0115520. https://doi.org/10.1371/journal.pone.0115520 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kar, S. et al. Crimean-Congo hemorrhagic fever virus in tortoises and Hyalomma aegyptium ticks in East thrace, turkey: potential of a cryptic transmission cycle. Parasites Vectors. 13, 201–213. https://doi.org/10.1186/s13071-020-04074-6 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Široký, P. et al. Co-distribution pattern of a haemogregarine Hemolivia mauritanica (Apicomplexa: Haemogregarinidae) and its vector Hyalomma aegyptium (Metastigmata: Ixodidae). J. Parasitol. 95, 728–733. https://doi.org/10.1645/GE-1842.1 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Rubel, F. Hyalomma aegyptium: observed global distribution, imported specimens, preferred hosts and vector competence. Ticks Tick-borne Dis. 16 (1), 102438. https://doi.org/10.1016/j.ttbdis.2025.102438 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Laghzaoui, E. M. et al. Acaricidal properties of essential oils from Moroccan plants against immature ticks of Hyalomma aegyptium (Linnaeus, 1758); an external parasite of the spurthighed tortoise (Testudo graeca). Int. J. Acarol. 44 (7), 315–321. https://doi.org/10.1080/01647954.2018.1520918 (2018).

    Article 

    Google Scholar 

  • Abbas, R. Z., Zaman, M. A., Colwell, D. D., Gilleard, J. & Iqbal, Z. Acaricide resistance in cattle ticks and approaches to its management: the state of play. Vet. Parasitol. 203, 6–20. https://doi.org/10.1016/j.vetpar.2014.03.006 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zaheer, T. et al. Insights into nanopesticides for ticks: the superbugs of livestock. Oxid. Med. Cell. Longev. 2022(1), 7411481. https://doi.org/10.1155/2022/7411481 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • El Hakim, A. E., Shahein, Y. E., Abouelella, A. M. & Selim, M. E. Purification and characterization of two larval glycoproteins from the cattle tick, Boophilus annulatus. J. Vet. Sci. 8, 175–180. https://doi.org/10.4142/jvs.2007.8.2.175 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ibrahium, S. M. et al. Acaricidal activity of tea tree and lemon oil nanoemulsions against Rhipicephalus annulatus. Pathogens 11 (12), 1506. https://doi.org/10.3390/pathogens11121506 (2022b).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ribeiro, V. L. S. et al. Acaricidal properties of the essential oil and precocene II obtained from Calea Serrata (Asteraceae) on the cattle tick Rhipicephalus (Boophilus) Microplus (Acari: Ixodidae). Vet. Parasitol. 179, 195–198. https://doi.org/10.1016/j.vetpar.2011.02.006 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Costa-Júnior, L. M. et al. Acaricidal efficacies of Lippia gracilis essential oil and its phytochemicals against organophosphate-resistant and susceptible strains of Rhipicephalus (Boophilus) Microplus. Vet. Parasitol. 228, 60–64. https://doi.org/10.1016/j.vetpar.2016.05.028 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gonzaga, B. C. F. et al. Essential oils and isolated compounds for tick control: advances beyond the laboratory. Parasites Vectors. 16 (1), 415. https://doi.org/10.1186/s13071-023-05969-w (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lam, M. K. et al. Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: growth condition and kinetic studies. Renew. Energy. 103, 197–207. https://doi.org/10.1016/j.renene.2016.11.032 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Torres, E., Bertoldo, L., Bender, C., Medianeira, T. & de Cassia, R. Removal of organic contaminants in water bodies or wastewater by microalgae of the genus Chlorella: A review. Case Stud. Chem. Environ. Eng. 8, 100476. https://doi.org/10.1016/j.cscee.2023.100476 (2023).

    Article 
    CAS 

    Google Scholar 

  • Ahmad, I., Abdullah, N., Iwamoto, K. & Yuzir, A. The contribution of microalgae in bio-refinery and resource recovery: a sustainable approach leading to circular bioeconomy. Chem. Eng. Trans. 89, 391–396. https://doi.org/10.3303/CET2189066 (2021).

    Article 

    Google Scholar 

  • Gonçalves, A. L., Pires, J. C. M. & Simões, M. A review on the use of microalgal consortia for wastewater treatment. Algal Res. 24, 403–415. https://doi.org/10.1016/j.algal.2016.11.008 (2017).

    Article 

    Google Scholar 

  • Umamaheswari, J. & Shanthakumar, S. Efficacy of microalgae for industrial wastewater treatment: A review on operating conditions, treatment efficiency and biomass productivity. Rev. Environ. Sci. Bio/Technol. 15, 265–284. https://doi.org/10.1007/s11157-016-9397-7 (2016).

    Article 
    CAS 

    Google Scholar 

  • Liu, X. et al. Growth of Chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide. Chemosphere 186, 977–985. https://doi.org/10.1016/j.chemosphere.2017.07.160 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Salgueiro, J. L., Perez-Rial, L., Maceiras, R., Sanchez, A. & Cancela, A. Transforming wastewater into biofuel: nutrient removal and biomass generation with Chlorella vulgaris. Energies 17, 4911. https://doi.org/10.3390/en17194911 (2024).

    Article 
    CAS 

    Google Scholar 

  • Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S. & de Lasa, H. Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renew. Sustain. Energy Rev. 27, 622–653. https://doi.org/10.1016/j.rser.2013.05.063 (2013).

    Article 
    CAS 

    Google Scholar 

  • Sandoval, J., Naranjo, K. & Casas, L. Sunscreen production from Chlorella vulgaris. Chem. Eng. Trans. 109, 325–330. https://doi.org/10.3303/CET24109055 (2024).

    Article 

    Google Scholar 

  • Hwang, J-H., Church, J., Lee, S-J., Park, J. & Lee, W. H. Use of microalgae for advanced wastewater treatment and sustainable bioenergy generation. Environ. Eng. Sci. 33 (11), 882–897. https://doi.org/10.1089/ees.2016.013 (2016).

    Article 
    CAS 

    Google Scholar 

  • Hoogstraal, H. African ixodoidea. I. Ticks of the Sudan (with special reference to Equatoria Province and with preliminary reviews of the genera boophilus, margaropus, and Hyalomma). In Department Navy Bureau Med. Surg. US Naval Med. Res. Unit. 3 Cairo Egypt. https://api.semanticscholar.org/CorpusID:89546372 (1956).

  • Estrada-Peña, A., Mihalca, A. D. & Petney, T. N. Ticks of Europe and North Africa – a guide to species identification. Springer Int. Publishing. 404, 856. https://doi.org/10.1007/978-3-319-63760-0 (2017).

  • Stainer, R. Y., Kunisawa, R., Mandel, M. & Cohin-Bazire, G. Purification and properties of unicellular blue-green algae (order Chrococcales). Bacteriol. Rev. 35, 171–205. https://doi.org/10.1128/br.35.2.171-205.1971 (1971).

    Article 

    Google Scholar 

  • El-Sayed, A. B. & El Fouly, M. M. Recovery of outdoor mass culture bleached Scendesmus Sp. Pakistan J. Biol. Sci. 8 (3), 470–474. https://doi.org/10.3923/pjbs.2005.470.474 (2005).

    Article 

    Google Scholar 

  • Wang, G. X. et al. Bioassay-guided isolation and identification of active compounds from Fructus cnidii against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus). Parasitol. Res. 106, 247–255. https://doi.org/10.1007/s00436-009-1659-7 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Scheffe, H. The Analysis of Variance. Vol. 72 (Wiley, 1999).

  • Millonig, G. Advantages of a phosphate buffer for OSO4 solutions in fixation. J. Appl. Phys. 32, 1637–1639 (1961).

    Google Scholar 

  • Dawes, C. J. Biological Techniques in Electron Microscopy 148–149 (Barnes and Noble, Inc., 1971).

  • Merdivenci, A. Türkiye keneleri üzerine aras¸tırmalar, Istanbul Cerrahpasa Tıp Fakültesi Yayını, Yayın No; 1488, Kurtulus¸ Matbaası, Istanbul (1969).

  • Aydin, L. Distribution and species of ticks on ruminants in the Southern Maramara region. Acta Parasitol. Turc. 24 (1), 194–200 (2000).

    Google Scholar 

  • Aydin, L., Yildirimhan, H. S. & Ugurtaš, I. H. Prevalence of ticks (Ixodidae) on some lizards and turtles in the Marmara region. Acta Parasitol. Turc. 26 (1), 84–86 (2002).

    Google Scholar 

  • Bakirci, S. Prevalence of Hyalomma aegyptium (Linneaus, 1758) on tortoises (Testudo graeca) in Izmir and Aydin province, Turkey. Etlik Vet. Mikrobiyol Derg. 27 (1), 5–7 (2016). http://vetkontrol.tarim.gov.tr/merkez

    Google Scholar 

  • Hoogstraal, H., Kaiser, M. N., Traylor, M. A., Guindy, E. & Gaber, S. Ticks (Ixodidae) on birds migrating from Europe and Asia to africa, 1959-61. Bull. World Health Org. 28, 235–262 (1963). https://iris.who.int/handle/10665/266527

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoogstraal, H. et al. Ticks (Ixodidae) on migrating birds in egypt, spring and fall 1962. bull. Org. Mond. Sante and bull. Wld Hlth Org. 30, 355–367 (1964). https://iris.who.int/handle/10665/266828

    CAS 

    Google Scholar 

  • Sweatman, G. K. Temperatures and humidity effects on the oviposition of Hyalomma aegyptium ticks of different engorgement weights. J. Med. Entomol. 5, 429–439. https://doi.org/10.1093/jmedent/5.4.429 (1968).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walker, A. R. et al. Ticks of domestic animals in Africa: a guide to identification species. Bioscience Reports Edinburgh (2014).

  • Hoogstraal, H. & Kaiser, M. N. The ticks (Ixodoidea) of egypt: a brief review and keys. J. Egypt. Public. Health Assoc. 33, 57–85 (1958). https://api.semanticscholar.org/CorpusID:87521015

    Google Scholar 

  • Nowak, M. The international trade in reptiles (Reptilia)-The cause of the transfer of exotic ticks (Acari: Ixodida) to Poland. Vet. Parasitol. 169, 373–381. https://doi.org/10.1016/j.vetpar.2010.01.006 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Liebish, A., Rahaman, M. S. & Hoogstaal, H. Tick fauna of Egypt with special reference to studies on Hyalomma anatolicum anatolicum the natural vector of theilerioses. Progress Acarology. 1, 55–58 (1989).

    Google Scholar 

  • Clark, L. G. & Doten, E. H. Ticks on imported reptiles into Miami International Airport: November 1994 through January 1995. In Proceedings for the Veterinary Epidemiology and Economics Symposium. United States Department of Agriculture, Fort Collins, CO. 1A17-1A25 (1995).

  • Burridge, M. J., Simmons, L. A. & Hofer, C. C. Clinical study of a permethrin formulation as a topical acaricide for use on tortoises, snakes and lizards. J. Herpetol Med. Surg. 13 (4), 16–19. https://doi.org/10.1016/S0304-4017(03)00060-8 (2003).

    Article 

    Google Scholar 

  • Hillyard, P. D. Ticks of North-West Europe. Synopses of the British Fauna (New Series). Banks RSK, Crothers JH (Eds) No. 52. In The Linnean Society of London and The Estuarine and Coastal Sciences Association by Field Studies Council Publications, Montford Bridge, U.K. vii 178 ISBN: 1 85153 257 9. E19.50 (1996).

  • Nowak-Chmura, M. A biological/medical review of alien tick species (Acari: Ixodida) accidentally transferred to Poland. Annals Parasitol. 60 (1), 49–59 (2014). https://api.semanticscholar.org/CorpusID:33565367

    Google Scholar 

  • Brianti, E. et al. Risk for the introduction of exotic ticks and pathogens into Italy through the illegal importation of tortoises, Testudo Graeca. Med. Vet. Entomol. 24, 336–339. https://doi.org/10.1111/j.1365-2915.2010.00874.x (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ren, Q. et al. Biological control of engorged female Haemaphysalis qinghaiensis (Acari: Ixodidae) ticks with different Chinese isolates of Beauveria Bassiana. Parasitol. Res. 109, 1059–1064. https://doi.org/10.1007/s00436-011-2346-z (2011).

    Article 
    PubMed 

    Google Scholar 

  • Singh, N. K. et al. Acaricidal activity of Cymbopogon winterianus, Vitex Negundo and Withania somnifera against synthetic pyrethroid resistant Rhipicephalus (Boophilus) Microplus. Parasitol. Res. 113 (1), 341–350. https://doi.org/10.1007/s00436-013-3660-4) (2014).

    Article 
    PubMed 

    Google Scholar 

  • Alonso-Díaz, M. A. & Fernández-Salas, A. Entomopathogenic fungi for tick control in cattle livestock from Mexico. Front. Fungal Biology. 2, 657694. https://doi.org/10.3389/ffunb.2021.657694 (2021).

    Article 

    Google Scholar 

  • Abdel-Ghany, H. S. et al. In vitro acaricidal effect of Melia azedarach and Artemisia herba-alba extracts on Hyalomma dromedarii (Acari: Ixodidae): embryonated eggs and engorged nymphs. J. Parasitic. Dis. 43, 696–710. https://doi.org/10.1007/s12639-019-01149-9 (2019).

  • Sewify, G. H. & Habib, S. M. Biological control of the tick fowl Argas Persicargas persicus by the entomopathogenic fungi Beauveria Bassiana and Metarhizium anisopliae. Anzeiger Für Schädlingskunde = J. Pest Sci. 74, 121–123. https://doi.org/10.1046/j.1439-0280.2001.01015.x (2001).

    Article 

    Google Scholar 

  • Pourseyed, S. H., Tavassoli, M., Bernousi, I. & Mardani, K. Metarhizium anisopliae (Ascomycota: Hypocreales): an effective alternative to chemical acaricides against different developmental stages of fowl tick Argas persicus (Acari: Argasidae). Vet. Parasitol. 172 (3–4), 305–310. https://doi.org/10.1016/j.vetpar.2010.05.014 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tavassoli, M., Pourseyed, S. H., Ownagh, A., Bernousi, I. & Mardani, K. Biocontrol of pigeon tick Argas reflexus (Acari: Argasidae) by entomopathogenic fungus Metarhizium anisopliae (Ascomycota: Hypocreales). Brazilian J. Microbiol. 42, 1445–1452. https://doi.org/10.1590/S1517-838220110004000030 (2011).

    Article 

    Google Scholar 

  • Ibrahim, A. A., Marzouk, A. S., Mohamed, F. S. A., Swelim, H. H. & Baioumy, A. A. Effectiveness of spraying the entomopathogenic fungus Beauveria Bassiana (Balsamo) on the main biological parameters involved in the control of the adult tick Argas (Persicargas) persicus (Oken, 1818). Int. J. Environ. Sci. Eng. (IJESE). 8, 13–30 (2017).

    Google Scholar 

  • Marzouk, A. S., Swelim, H. H. & Ali, A. A. B. Ultrastructural changes induced by the entomopathogenic fungus Beauveria Bassiana in the ovary of the tick Argas (Persicargas) persicus (Oken). Ticks Tick. Borne Dis. 11 (6), 101507. https://doi.org/10.1016/j.ttbdis.2020.101507 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Zeina, G. W., Ahmed, M., Saeed, M., Ziena, L. & Laing, M. Field evaluation of Beauveria Bassiana (Balsamo) vuillemin isolates for the biocontrol of Rhipicephalus Microplus (Canestrini) ticks on cattle. Exp. Parasitol. 235, 108215. https://doi.org/10.1016/j.exppara.2022.108215 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marzouk, A. S. & Ali, A. A. B. A comparison between the effectiveness of the fungi Beauveria Bassiana and Metarhizium anisopliae for the control of Argas persicus with the emphasis of histopathological changes in the integument. Vet. Parasitol. 317, 109906. https://doi.org/10.1016/j.vetpar.2023.10990 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abdel-Shafy, S., Soliman, M. M. & Habeeb, S. M. In vitro acaricidal effect of some crude extracts and essential oils of wild plants against certain tick species. Acarologia 47, 33–42 (2007).

    Google Scholar 

  • Anholeto, L. A. et al. I. Morphological alterations in the ovaries of Amblyomma Cajennense semi-engorged ticks exposed to ethanolic extract of Acmella Oleracea. Microsc Res. Tech. 81, 1347–1357. https://doi.org/10.1002/jemt.23145 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reis, A. C. et al. Cytotoxic effects of Satureja Montana L. essential oil on oocytes of engorged Rhipicephalus Microplus female ticks (Acari: Ixodidae). Microsc. Res. Tech. 84 (7), 1375–1388. https://doi.org/10.1002/jemt.23693 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mohamed, S. N. A., Montasser, A. A. & Ali, A. A. B. Acaricidal effect of Citrullus colocynthis fruit extract on the camel tick Hyalomma dromedarii (Koch, 1844). Ticks Tick-borne Dis. 13, 101995. https://doi.org/10.1016/j.ttbdis.2022.101995 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Ali, A. A. B., Taha, M. A. & Controlling Argas arboreus and A. persicus (Acari: Argasidae) by Adiantum capillus-veneris L. extracts with phytochemical analysis. Vet. Parasitol. 324, 110067. https://doi.org/10.1016/j.vetpar.2023.110067 (2023).

  • Ali, A. A. B., Montasser, A. A. & Mohamed, S. N. A. Histopathological effects of the fruit extract of Citrullus colocynthis on the ovary of the tick Hyalomma dromedarii. Exp. Appl. Acarol. 92 (2), 275–295. https://doi.org/10.1007/s10493-023-00895-z (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hassan, M. E., Mohafrash, S. M., Fallatah, S. A., El-Sayed, A. E. K. B. & Mossa, A. T. H. Eco-friendly larvicide of Amphora coffeaeformis and Scenedesmus obliquus microalgae extracts against Culex pipiens. J. Appl. Phycol. 33, 2683–2693. https://doi.org/10.1007/s10811-021-02440-0 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cavalcanti, V. L. R. et al. Chlorella vulgaris lectin kills Aedes aegypti larvae. Algal Res. 56, 102290. https://doi.org/10.1016/j.algal.2021.102290 (2021).

    Article 

    Google Scholar 

  • Tufan-Cetin, O. & Cetin, H. Use of micro and macroalgae extracts for the control of vector mosquitoes. Peer J. 11, e16187. https://doi.org/10.7717/peerj.16187 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • El-Mustapha, L., Abderrafea, E., Ayoub, K., Abdelaziz, A. & El Hassan, E. M. Toxicity of essential oils obtained from Juniperus thurifera var. Africana and Mentha suaveolens subsp. Timija chemotypes against pre-adult stages of Hyalomma aegyptium tick (Acari: Ixodidae). Nat. Prod. Res. 35 (17), 2952–2957. https://doi.org/10.1080/14786419.2019.1677658 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Robbins, R. G. et al. First records of Hyalomma aegyptium (Acari: ixodida: Ixodidae) from the Russian spur-thighed tortoise, Testudo Graeca nikolskii, with an analysis of tick population dynamics. J. Parasitol. 84, 1303–1305. https://doi.org/10.2307/3284699 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Široký, P., Erhart, J., Petrzelková, K. J. & Kamler, M. Life cycle of tortoise tick Hyalomma aegyptium under laboratory conditions. Exp. Appl. Acarol. 54, 277–284. https://doi.org/10.1007/s10493-011-9442-8 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Gharbi, M. et al. Infestation of the spur-thighed tortoise (Testudo graeca) by Hyalomma aegyptium in Tunisia. Ticks Tick-borne Dis. 6, 352–355. https://doi.org/10.1016/j.ttbdis.2015.02.009 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Tiar, G., Tiar-Saadi, M., Benyacoub, S., Rouag, R. & Široký, P. The dependence of Hyalomma aegyptium on its tortoise host Testudo Graeca in Algeria. Med. Vet. Entomol. 30 (3), 351–359. https://doi.org/10.1111/mve.1217 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bizhga, B. et al. Hyalomma aegyptium the dominant hard tick in tortoises Tesdudo hermanni boettgeri found in different regions of Albania. Int. J. Parasitology: Parasites Wildl. 17, 199–204. https://doi.org/10.1016/j.ijppaw.2022.02.002 (2022).

    Article 

    Google Scholar 

  • Sarani, S. et al. Identification of zoonotic pathogenic bacteria from blood and ticks obtained from hares and long-eared hedgehogs (Hemiechinus megalofis) in Eastern Iran. Comp. Immunol. Microbiol. Infect. Dis. 104, 102097. https://doi.org/10.1016/j.cimid.2023.102097 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Gharbi, M. & Darghouth, M. A. A review of Hyalomma scupense (Acari, Ixodidae) in the Maghreb region: from biology to control. Parasite 21, 2. https://doi.org/10.1051/parasite/2014002 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Friesen, K. J. & Kaufman, W. R. Salivary gland degeneration and vitellogenesis in the Ixodid tick Amblyomma hebraeum: surpassing a critical weight is the prerequisite and detachment from the host is the trigger. J. Insect Physiol. 55 (10), 936–942. https://doi.org/10.1016/j.jinsphys.2009.06.007 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bedford, G. A. H. Ticks found on man and his domestic animals and poultry in South Africa. J. Department Agric. 1 (4), 317–340 (1920).

    Google Scholar 

  • Gazyağci, S., Aşan, N. & Demirbaş, Y. A common tortoise tick, Hyalomma aegyptium Linne 1758 (Acari: Ixodidae), identified on eastern hedgehog (Erinaceus concolor Martin 1838) in Central Anatolia. Turk. J. Vet. Anim. Sci. 34 (2), 211–213. https://doi.org/10.3906/vet-0808-21 (2010).

    Article 

    Google Scholar 

  • Kireçci, E., Özer, A., Balkaya, İ., Taniş, H. & Deveci, S. Identification of ticks on tortoises (Testudo graeca) and investigation of some pathogens in these ticks in kahramanmaraş, Turkey. KSU J. Nat. Sci. 16 (1), 42–46 (2013). https://hdl.handle.net/11616/103344

    Google Scholar 

  • Kheirabadi, K. P., Samani, A. D., Shokohi, A. & Dehsahraei, H. S. An infestation by Hyalomma aegyptium (Acari: Ixodidae) on the lesions of break carapace of a turtle (Testudo Graeca Ibera). J. Vet. Med. Res. 3 (1), 1042. https://doi.org/10.47739/2378-931X/1042 (2016).

    Article 

    Google Scholar 

  • Boucheikhchoukh, M. et al. MALDI-TOF MS identification of ticks of domestic and wild animals in Algeria and molecular detection of associated microorganisms. Comparative immunology. Microbiol. Infect. Dis. 57, 39–49. https://doi.org/10.1016/j.cimid.2018.05.002 (2018).

    Article 

    Google Scholar 

  • Benyahia, H. et al. Molecular and MALDI-TOF MS characterisation of Hyalomma aegyptium ticks collected from turtles and their associated microorganisms in Algeria. Ticks Tick-borne Dis. 13, 101858. https://doi.org/10.1016/j.ttbdis.2021.101858 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Ammar, S. S. M. et al. Tick infestation of the mediterranean spur-thighed to toises (Testdo graece, linnaeus, 1758) from Western regions of Algeria. Folia Vet. 68 (3), 30–35. https://doi.org/10.2478/fv-2024-0024 (2024).

    Article 

    Google Scholar 

  • Liu, J. & Chen, F. Biology and industrial applications of Chlorella: advances and prospects. Microalgae Biotechnology. Adv. Biochem. Eng. 2014, 153. https://doi.org/10.1007/10_2014_286 (2014).

  • Sonenshine, D. E. & Roe, R. M. (eds). Biology of Ticks 2 (Oxford University Press, 2013).

  • Camargo-Mathias, M. I. Inside the Ticks. Morphophysiology, Toxicology and Therapeutic Perspectives (Editora Unesp, 2018).

  • Hughes, G. M. The co-ordination of insect movements: I the walking movements of insects. J. Exp. Biol. 29 (2), 267–285. https://doi.org/10.1242/jeb.29.2.267 (1952).

    Article 

    Google Scholar 

  • George, H. F. & Nuttall, F. R. S. Regeneration of the mouthparts and legs in ticks. Argas persicus, Amblyomma hebraeum and Hyalomma aegyptium. Parasitology 12 (1), 7–26. https://doi.org/10.1017/S0031182000013974 (1920).

  • Splinder, K. D. Chitin: its synthesis and degradation in arthropods, 1983. In: Splinder KD, Splinder-Barth M, Londershausen M (Eds) Chitin Metabolism: a Target for Drugs Against Parasites. Parasitol. Res. 76, 283–288. https://doi.org/10.1007/BF00928180 (1990).

  • de Oliveira, P. R., Calligaris, I. B. & Bechara, G. H. Camargo mathias, M. I. Rhipicephalus sanguineus sensu Lato (Acari: Ixodidae) nymphs: an ultrastructural study of the integument and midgut. Ticks Tick-borne Dis. 5, 834–840. https://doi.org/10.1016/j.ttbdis.2013.11.010 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Sonenshine, D. E. The female reproductive system. In Biology of Ticks (ed. Sonenshine, D. E.) 280–304 (Oxford University Press, 1991).

  • Dillinger, S. C. G. & Kesel, A. B. Changes in the structure of the cuticle of Ixodes ricinus L. 1758 (Acari: Ixodidae) during feeding. Arthropod Struct. Dev. 31, 95–10. https://doi.org/10.1016/s1467-8039(02)00042-7 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Oliveira, P. R., Calligaris, I. P., Nunes, P. H., Bechara, G. H. & Camargo-Mathias, M. I. Fluazuron-induced morphological changes in Rhipicephalus sanguineus latreille, 1806 (Acari: Ixodidae) nymphs: an ultra-structural evaluation of the cuticle formation and digestive processes. Acta Trop. 133, 45–55. https://doi.org/10.1016/j.actatropica.2014.01.008 (2014b).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Oliveira, P. R., Calligaris, I. P., Roma, G. C. & Bechara, G. H. Camargo-Mathias, M. I. Fluazuron-induced morphophysiological changes in the cuticle formation and midgut of Rhipicephalus sanguineus latreille, 1806 (Acari: Ixodidae) nymphs. Parasitol. Res. 112, 45–58. https://doi.org/10.1007/s00436-012-3103-7 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Dotson, E. M., Connat, J. L. & Diehl, P. A. Ecdysteroid titre and metabolism and cuticle deposition during embryogenesis ofthe Ixodid tick Ambyomma hebraeum (Koch). Comp. Biochem. Physiol. 110B, 155–166. https://doi.org/10.1016/0305-0491(94)00140-p (1995).

    Article 
    CAS 

    Google Scholar 

  • Harrison, W. F. & Foelix, R. F. Microscopic Anatomy of Invertebrates, vol. 8B: Chelicerata Arthropoda. Wiley-Liss, New York. 512 ISBN: 0471180149 (1999).

  • Gangishetti, U. et al. Effects of benzoylphenylurea on Chitin synthesis and orientation in the cuticle of the Drosophila larva. Eur. J. Cell. Biol. 88, 167–180. https://doi.org/10.1016/j.ejcb.2008.09.002 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mommaerts, V., Sterk, G. & Smagghe, G. Hazards and uptake of Chitin synthesis inhibitors in bumblebees Bombus terrestris. Pest Manage. Sci. 62, 752–758. https://doi.org/10.1002/ps.1238 (2006).

    Article 
    CAS 

    Google Scholar 

  • Saenz-De-Cabezon, F. J., Perez-Moreno, I., Zalom, F. G. & Marco, V. Effects of Iufenuron on Lobesia Botrona (Lepidoptera: Tortricidae) egg, larval, and adult stages. J. Econ. Entomol. 99, 427–431. https://doi.org/10.1603/0022-0493-99.2.427 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mikolajczyk, P., Oberlander, H., Silhacek, D. L., Ishaaya, I. & Shaaya, E. Chitin synthesis in Spodoptera Frugiperda wing imaginal discs. I. Chlorfluazuron, diflubenzuron, and Teflubenzuron inhibit incorporation but not uptake of [14 C]-N-acetyl-D-glucosamine. Arch. Insect Biochem. Physiol. 25, 245–258. https://doi.org/10.1002/arch.940250306 (1994).

    Article 
    CAS 

    Google Scholar 

  • Oberlander, H. & Silhacek, D. L. New perspectives on the mode of action of benzoylphenyl Urea insecticides. In: (eds Ishaaya, I. & Degheele, D.) Insecticides with Novel Modes of Action: Mechanism and Application. Springer, Berlin. 92–105 Doi: https://doi.org/10.1007/978-3-662-03565-8_6 (1998).

    Chapter 

    Google Scholar 

  • Palli, S. R. & Retnakaran, A. Molecular and biochemical aspects of chitin synthesis inhibition. In: Jolle’s, P. & Muzzarelli, R. A. A. (Eds) Chitin and Chitinases. Birkhäuser Verlag. 85–98 (1999). https://doi.org/10.1007/978-3-0348-8757-1_6

  • Oberlander, H. & Smagghe, G. Imaginal discs and tissue cultures as targets for insecticide action. In: (ed Ishaaya, I.) Biochemical Sites of Insecticide Action and Resistance. Springer, Berlin. 133–150 Doi: https://doi.org/10.1007/978-3-642-59549-3_6 (2001).

    Chapter 

    Google Scholar 

  • Balashov, Y. S. Dermal glands of hyalomma asiaticum. Zool. Zh. 39, 1328–1334 (1960).

    Google Scholar 

  • Walker, A. R., Lloyd, C. M., McGuire, K., Harrison, S. J. & Hamilton, J. G. C. Integumental glands of the tick Rhipicephalus appendiculatus (Acari: Ixodidae) as potential producers of semiochemicals. J. Med. Entomol. 33, 743–759. https://doi.org/10.1093/jmedent/33.5.743 (1996a).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, A. C. Chitin metabolism. Arch. Insect Biochem. Physiol. 6, 267–277. https://doi.org/10.1002/arch.940060405 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kemp, D. H., Dunster, S., Binnington, K. C., Bird, P. E. & Nolan, J. Mode of action of CGA 157419 on the cattle tick Boophilus Microplus. Bull. Soc. Fr. Parasitol. 8, 1048 (1990).

    Google Scholar 

  • Delbecque, J-P., Diehl, P. A. & O’Connor, J. D. Presence of ecdysone and ecdysterone in the tick Amblyommu Hrbrueum Koch. Experirntiu 34, 1379–1381. https://doi.org/10.1007/bf01981487 (1978).

    Article 
    CAS 

    Google Scholar 

  • (ed Hoffmann, J. A.) Progress in Ecdysone Research. Elsevier/North-Holland, A. / New York/Oxford. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALZOOLINEINRA8050274127 (1980).

    Google Scholar 

  • Germond, J-E., Diehl, P. A. & Morici, M. Correlations between integument structure and ecdysteroid titers in fifth-stage nymphs of the tick, Ornithodoros moubata (Murray, 1877; sensu walton, 1962). Gen. Comp. Endocrinol. 46, 255–266. https://doi.org/10.1016/0016-6480(82)90207-6 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Camargo-Mathias, M. I. Comparative results of action of natural and synthetic acaricides in reproductive and salivar systems of Rhipicephalus sanguineus – Searching by a sustainable ticks control. Insecticides – Adv. Integr. Pest Manage. InTech. 391–410. https://doi.org/10.5772/29127 (2012).

  • Kang, H. K., Seo, C. H. & Park, Y. Marine peptides and their anti-infective activities. Mar. Drugs. 13 (1), 618–654. https://doi.org/10.3390/md13010618 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeraatkar, A. K., Ahmadzadeh, H., Talebi, A. F., Moheimani, N. R. & McHenry, M. P. Potential use of algae for heavy metal bioremediation, a critical review. J. Environ. Manag. 181, 817–831. https://doi.org/10.1016/j.jenvman.2016.06.059 (2016).

    Article 
    CAS 

    Google Scholar 

  • Aly, S. M., ElBanna, N. & Fathi, M. Chlorella in aquaculture: challenges, opportunities, and disease prevention for sustainable development. Aquacult. Int. 32, 1559–1586. https://doi.org/10.1007/s10499-023-01229-x (2024).

    Article 

    Google Scholar 

  • Wigglesworth, V. B. Structural lipids in the insect cuticle and the function of oenocytes. Tissue Cell. 2 (1), 155–179. https://doi.org/10.1016/s0040-8166(70)80013-1 (1970).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Whiten, S. R., Eggleston, H. & Adelman, Z. N. Ironing out the details: exploring the role of iron and Heme in Blood-Sucking arthropods. Front. Physiol. 8, 1134. https://doi.org/10.3389/fphys.2017.01134 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mossa, A. T. H., Mohafrash, S. M. & Chandrasekaran, N. Safety of natural insecticides: toxic effects on experimental animals. Biomed. Res. Int. 2018 (1), 4308054. https://doi.org/10.1155/2018/4308054 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pradhan, J., Sahu, S. & Das, B. K. Protective effects of Chlorella vulgaris supplemented diet on antibacterial activity and immune responses in Rohu fingerlings, Labeo Rohita (Hamilton), subjected to Aeromonas hydrophila infection. Life 13 (4), 1028. https://doi.org/10.3390/life13041028 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading