Comparing activated carbon and graphene-based electrodes using electrosorption process to quantify environmental impact associated with thorium extraction via LCA framework

  • Alotaibi, A. M., Ismail, A. F. & Aziman, E. S. Ultra-effective modified clinoptilolite adsorbent for selective thorium removal from radioactive residue. Sci. Rep. 13, 1–21 (2023).

    Google Scholar 

  • Aziman, E. S. & Ismail, A. F. Frontier looking of rare-earth processed residue as sustainable thorium resources: an insight into chemical composition and separation of thorium. Prog Nucl. Energy. 128, 103471 (2020).

    Google Scholar 

  • Yussuf, N. M., Ismail, A. F., Aziman, E. S., Mohamed, N. A. & Teridi, M. A. M. Innovative g-C3N4/AX composite electrode for effective thorium elimination from aqueous solutions. Sep. Purif. Technol. 330, 125205 (2024).

    Google Scholar 

  • Salehuddin, A. H. J. M., Ismail, A. F., Bahri, C. N., Aniza, C. Z. & Aziman, E. S. Economic analysis of thorium extraction from monazite. Nucl. Eng. Technol. 51, 631–640 (2019).

    Google Scholar 

  • Toit, M. H. D., Van Niekerk, F. & Amirkhosravi, S. Review of thorium-containing fuels in LWRs. Prog Nucl. Energy. 170, 105136 (2024).

    Google Scholar 

  • Humelnicu, D., Dinu, M. V. & Drǎgan, E. S. Adsorption characteristics of UO22 + and Th4 + ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents. J. Hazard. Mater. 185, 447–455 (2011).

    Google Scholar 

  • Krūmiņš, J. & Kļaviņš, M. Investigating the potential of nuclear energy in achieving a Carbon-Free energy future. Energies 16, 1–31 (2023).

    Google Scholar 

  • Reijonen, H. M., Alexander, W. R. & Norris, S. Resilience in knowledge management – the case of natural analogues in radioactive waste management. Process. Saf. Environ. Prot. 180, 205–222 (2023).

    Google Scholar 

  • IAEA. Radioactive Waste Management Solutions for a Sustainable Future. in Proc. an Int. Conf. Vienna, Austria, 1–5 Novemb. 2021 1–5. International Atomic Energy Agency, (2023).

  • Chu, E. W. & Karr, J. R. Ref. Modul Life Sci. 1–22 (Elsevier, doi:https://doi.org/10.1016/b978-0-12-809633-8.02380-3 (2017).

  • Yu, T. H. et al. Life cycle assessment of environmental impacts and energy demand for capacitive Deionization technology. Desalination 399, 53–60 (2016).

    Google Scholar 

  • Vahidi, E. & Zhao, F. Environmental life cycle assessment on the separation of rare Earth oxides through solvent extraction. J. Environ. Manage. 203, 255–263 (2017).

    Google Scholar 

  • Wang, X. et al. Electrochemical behavior of Th(IV) and its electrodeposition from ThF4-LiCl-KCl melt. Electrochim. Acta. 196, 286–293 (2016).

    Google Scholar 

  • Liu, Y. L. et al. Electroseparation of thorium from ThO2 and La2O3 by forming Th-Al alloys in LiCl-KCl eutectic. Electrochim. Acta. 158, 277–286 (2015).

    Google Scholar 

  • Al-Areqi, W. M., Bahri, C. N. A. C. Z., Majid, A. A. & Sarmani, S. Separation and radiological impact assessment of thorium in Malaysian monazite processing. Malaysian J. Anal. Sci. 20, 770–776 (2016).

    Google Scholar 

  • Al-Areqi, W. M., Bahri, C. N. A. C. Z., Majid, A. A. & Sarmani, S. Solvent extraction of thorium from rare Earth elements in monazite thorium concentrate. Malaysian J. Anal. Sci. 21, 1250–1256 (2017).

    Google Scholar 

  • Shilpa, A. S., Thangadurai, T. D., Bhalerao, G. M. & Maji, S. Tailor-designed carbon-based novel fluorescent architecture for nanomolar detection of radioactive elements U(VI) and Th(IV) in pH ± 5.0. Talanta 272, 125783 (2024).

    Google Scholar 

  • Corradetti, S. et al. Effect of graphite and graphene oxide on thorium carbide microstructural and thermal properties. Sci. Rep. 11, 1–11 (2021).

    Google Scholar 

  • Yussuf, N. M., Ismail, A. F., Mohamed, N. A. & Teridi, M. A. M. Photocatalytic Th(IV) removal: unleashing the potential of amidoxime-modified graphitic carbon nitride photocatalyst. Mater. Lett. 357, 135771 (2024).

    Google Scholar 

  • Iskandar, B. T., Ismail, A. F., Aziman, E. S. & Ahmad, S. Advancing towards technology readiness: Continuous-flow electrosorption for thorium separation from rare Earth processing by-products. Nucl. Eng. Technol. https://doi.org/10.1016/j.net.2024.06.023 (2024).

    Google Scholar 

  • Mohamed, N. A., Ismail, A. F., Safaei, J., Johan, M. R. & Teridi, M. A. M. A novel photoanode based on thorium oxide (ThO2) incorporated with graphitic carbon nitride (g-C3N4) for photoelectrochemical water splitting. Appl. Surf. Sci. 569, 151043 (2021).

    Google Scholar 

  • Aziman, E. S. & Ismail, A. F. Rapid selective removal of thorium via electrosorption towards efficiently managing rare-earth extraction residue. J. Environ. Chem. Eng. 9, 105478 (2021).

    Google Scholar 

  • Lima, F. M., Lovon-Canchumani, G. A., Sampaio, M. & Tarazona-Alvarado, L. M. Life cycle assessment of the production of rare Earth oxides from a Brazilian ore. Procedia CIRP. 69, 481–486 (2018).

    Google Scholar 

  • Raj, D. & Kannan, U. Analysis for the use of thorium based fuel in LWRs. Ann. Nucl. Energy. 174, 109162 (2022).

    Google Scholar 

  • Liu, X. et al. Efficient and selective capture of thorium ions by a covalent organic framework. Nat. Commun. 14, 1–10 (2023).

    Google Scholar 

  • Frischknecht, R. et al. Global guidance on environmental life cycle impact assessment indicators: progress and case study. Int. J. Life Cycle Assess. 21, 429–442 (2016).

    Google Scholar 

  • Grout, L., Hales, S., French, N. & Baker, M. G. A review of methods for assessing the environmental health impacts of an agricultural system. Int J. Environ. Res. Public. Health 15(7), 1315 (2018).

    Google Scholar 

  • Godinaud, J. et al. Life cycle assessment of an aquifer thermal energy storage system: influence of design parameters and comparison with conventional systems. Geothermics 120, 102996 (2024).

    Google Scholar 

  • Weisser, D. A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy 32, 1543–1559 (2007).

    Google Scholar 

  • Zhao, E., May, E., Walker, P. D. & Surawski, N. C. Emissions life cycle assessment of charging infrastructures for electric buses. Sustain. Energy Technol. Assessments. 48, 101605 (2021).

    Google Scholar 

  • Ashley, S. F., Fenner, R. A., Nuttall, W. J. & Parks, G. T. Life-cycle impacts from novel thorium-uranium-fuelled nuclear energy systems. Energy Convers. Manag. 101, 136–150 (2015).

    Google Scholar 

  • Koltun, P. & Klymenko, V. Cradle-to-gate life cycle assessment of the production of separated mix of rare Earth oxides based on Australian production route. Min. Min. Depos. 14, 1–15 (2020).

    Google Scholar 

  • Bicer, Y. & Dincer, I. Life cycle assessment of nuclear-based hydrogen and ammonia production options: A comparative evaluation. Int. J. Hydrogen Energy. 42, 21559–21570 (2017).

    Google Scholar 

  • Browning, G., Northey, S., Haque, N., Bruckard, W. & Cooksey, M. Life cycle assessment of rare earth production from monazite. TMS Annu. Meet https://doi.org/10.1002/9781119275039.ch12 (2016).

    Google Scholar 

  • Rahmat, M. A. et al. The impact of unregulated industrial tin-tailing processing in malaysia: Past, present and way forward. Resour. Policy. 78, 102864 (2022).

    Google Scholar 

  • Lynas Radiological impact assessmant of Lynas advanced materials plant – Quarterly Report. (2011).

  • Akhtar, N. et al. Particle size distribution and composition of soil sample analysis in a single pumping well using a scanning electron microscope coupled with an energy dispersive X-ray. Water 15, 1–20 (2023).

    Google Scholar 

  • Wattier, B. D., Matinez, N. E., Carbajales-Dale, M. & Shuller-Nickles, L. C. Use of life cycle assessment (LCA) to advance optimisation of radiological protection and safety. J. Radiol. Prot. 43, 031514 (2023).

    Google Scholar 

  • Søndergaard, G. L. & Abstract, M. Owsianiak in Life Cycle Assess. Theory Pract. (eds. Hauschild, M. Z., Rosenbaum, R. K. & Olsen, S. I.) 1–1216Springer Berlin Heidelberg, (2017). https://doi.org/10.1007/978-3-319-56475-3

  • ISO 14044. Environmental management: life cycle assessment; principles and framework. (International Organization for Standardization, 2006). (2006).

  • ISO 14040. Environmental management systems: life cycle assessment; principles and framework. (2014). at (2014). http://publications.apec.org/publication-detail.php?pub_id=453

  • Navarro, J. & Zhao, F. Life-cycle assessment of the production of rare-earth elements for energy applications: A review. Front. Energy Res. 2, 1–17 (2014).

    Google Scholar 

  • Gibon, T. & Menacho, Á. H. Parametric life cycle assessment of nuclear power for simplified models. Environ. Sci. Technol. 57, 14194–14205 (2023).

    Google Scholar 

  • Wernet, G. et al. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230 (2016).

    Google Scholar 

  • Yussuf, N. M., Ismail, A. F., Rahmat, M. A. & Mohamed, N. A. Electrosorption-driven selective thorium removal from radioactive wastewater with phosphate – Incorporated g-C3N4 electrode. J. Environ. Chem. Eng. 12, 113440 (2024).

    Google Scholar 

  • Aziman, E. S., Ismail, A. F., Muttalib, N. A. & Hanifah, M. S. Investigation of thorium separation from rare-earth extraction residue via electrosorption with carbon based electrode toward reducing waste volume. Nucl. Eng. Technol. 53, 2926–2936 (2021).

    Google Scholar 

  • Hernandez, P., Oregi, X., Longo, S. & Cellura, M. In Handb. energy Effic. Build. a life cycle approach 207–261 (Elsevier Inc., 2018). https://doi.org/10.1016/B978-0-12-812817-6.00010-3

  • Pfister, S., Koehler, A. & Hellweg, S. Assessing the environmental impacts of freshwater consumption in LCA. Environ. Sci. Technol. 43, 4098–4104 (2009).

    Google Scholar 

  • Jin, Y., Behrens, P., Tukker, A. & Scherer, L. Water use of electricity technologies: A global meta-analysis. Renew. Sustain. Energy Rev. 115, 1–11 (2019).

    Google Scholar 

  • Hilali, A., Mardoude, Y., Essahlaoui, A., Rahali, A. & Ouanjli, N. E. Migration to solar water pump system: environmental and economic benefits and their optimization using genetic algorithm based MPPT. Energy Rep. 8, 10144–10153 (2022).

    Google Scholar 

  • Cossutta, M. et al. A comparative life cycle assessment of graphene and activated carbon in a supercapacitor application. J. Clean. Prod. 242, 118468 (2020).

    Google Scholar 

  • Mendonça, M. C. P., Rodrigues, N. P., De Jesus, M. B. & Amorim, M. J. B. Graphene-based nanomaterials in soil: ecotoxicity assessment using enchytraeus crypticus reduced full life cycle. Nanomaterials 9, (2019).

  • Ault, T., Krahn, S. & Croff, A. Comparing the environmental impacts of uranium- and thorium-based fuel cycles with different recycle options. Prog Nucl. Energy. 100, 114–134 (2017).

    Google Scholar 

  • Chelvam, K., Hanafiah, M. M., Ali, A., Al Blooshi, A. & K. & Gate-to-gate life cycle analysis of a pilot-scale solar driven two-step thermochemical hydrogen sulfide decomposition for hydrogen production. J. Clean. Prod. 428, 139369 (2023).

    Google Scholar 

  • Zapp, P., Schreiber, A., Marx, J. & Kuckshinrichs, W. Environmental impacts of rare Earth production. MRS Bull. 47, 267–275 (2022).

    Google Scholar 

  • Schreiber, A., Marx, J. & Zapp, P. Life cycle assessment studies of rare earths production – Findings from a systematic review. Sci. Total Environ. 791, 148257 (2021).

    Google Scholar 

  • Farjana, S. H., Huda, N., Mahmud, M. A. P. & Lang, C. Comparative life-cycle assessment of uranium extraction processes. J. Clean. Prod. 202, 666–683 (2018).

    Google Scholar 

  • Continue Reading