Altshuler, D. et al. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407, 513–516. https://doi.org/10.1038/35035083 (2000).
Google Scholar
Konieczny, A. & Ausubel, F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant. Journal: Cell. Mol. Biology. 4, 403–410. https://doi.org/10.1046/j.1365-313x.1993.04020403.x (1993).
Google Scholar
Smith, S. M. & Maughan, P. J. SNP genotyping using KASPar assays. Methods in molecular biology (Clifton, N.J.) 1245, 243–256 (2015). https://doi.org/10.1007/978-1-4939-1966-6_18
Kim, N., Kwon, J. S., Kang, W. H. & Yeom, S. I. High-Resolution melting (HRM) genotyping. Methods in molecular biology. (Clifton N J). 2638, 337–349. https://doi.org/10.1007/978-1-0716-3024-2_24 (2023).
Google Scholar
Oliver, D. H., Thompson, R. E., Griffin, C. A. & Eshleman, J. R. Use of single nucleotide polymorphisms (SNP) and real-time polymerase chain reaction for bone marrow engraftment analysis. J. Mol. Diagnostics: JMD. 2, 202–208. https://doi.org/10.1016/s1525-1578(10)60638-1 (2000).
Google Scholar
Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74, 5463–5467. https://doi.org/10.1073/pnas.74.12.5463 (1977).
Google Scholar
Huang, X. & Huang, Y. Cellsnp-lite: an efficient tool for genotyping single cells. Bioinf. (Oxford England). 37, 4569–4571. https://doi.org/10.1093/bioinformatics/btab358 (2021).
Google Scholar
Shen, R. et al. High-throughput SNP genotyping on universal bead arrays. Mutat. Res. 573, 70–82. https://doi.org/10.1016/j.mrfmmm.2004.07.022 (2005).
Google Scholar
Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351. https://doi.org/10.1038/nrg.2016.49 (2016).
Google Scholar
Song, S. et al. Development of polymerase chain reaction-lateral flow dipstick assay for detection of Mycoplasma Bovis in cattle. BMC Vet. Res. 20, 382. https://doi.org/10.1186/s12917-024-04238-x (2024).
Google Scholar
Taboada, L., Sánchez, A., Pérez-Martín, R. I. & Sotelo, C. G. A new method for the rapid detection of Atlantic Cod (Gadus morhua), Pacific Cod (Gadus macrocephalus), Alaska Pollock (Gadus chalcogrammus) and Ling (Molva molva) using a lateral flow dipstick assay. Food Chem. 233, 182–189. https://doi.org/10.1016/j.foodchem.2017.04.087 (2017).
Google Scholar
Najomtien, P. et al. PCR combined with lateral flow dipstick assay (PCR-LFD) for a rapid diagnosis of melioidosis. Asian Pac. J. Allergy Immunol. https://doi.org/10.12932/ap-021023-1703 (2024).
Google Scholar
Wang, D. et al. Rapid identification of ralstonia Pickettii using PCR-nucleic acid test strips. Nan Fang Yi Ke Da Xue Xue bao = J. South. Med. Univ. 42, 1867–1874. https://doi.org/10.12122/j.issn.1673-4254.2022.12.16 (2022).
Google Scholar
Chen, F. et al. Immunochromatographic strip for rapid detection of cronobacter in powdered infant formula in combination with silica-coated magnetic nanoparticles separation and 16S rRNA probe. Biosens. Bioelectron. 61, 306–313. https://doi.org/10.1016/j.bios.2014.05.033 (2014).
Google Scholar
Ji, T., Zhang, J., Gao, Y., Zhao, C. & Gao, X. A rapid and visual detection of Staphylococcus haemolyticus in clinical specimens with RPA-LFS. Anal. Chim. Acta. 1273, 341534. https://doi.org/10.1016/j.aca.2023.341534 (2023).
Google Scholar
Yao, Y. et al. A colloidal gold test strip based on catalytic hairpin assembly for the clinical detection of influenza a virus nucleic acid. Talanta 265, 124855. https://doi.org/10.1016/j.talanta.2023.124855 (2023).
Google Scholar
Sun, M. L., Zhong, Y., Li, X. N., Yao, J. & Pan, Y. Q. Simple and feasible detection of hepatitis a virus using reverse transcription multienzyme isothermal rapid amplification and lateral flow dipsticks without standard PCR laboratory. Artif. Cells Nanomed. Biotechnol. 51, 233–240. https://doi.org/10.1080/21691401.2023.2203198 (2023).
Google Scholar
Yi, X. S. et al. Study on nucleic acid detection method of African swine fever vi⁃rus based on PCR-LFIA. J. Instrumental Anal. 43, 928–932. https://doi.org/10.13989/i.cnki.0517-6611.2016.20.027 (2024).
Google Scholar
Blažková, M., Javůrková, B., Fukal, L. & Rauch, P. Immunochromatographic strip test for detection of genus cronobacter. Biosens. Bioelectron. 26, 2828–2834. https://doi.org/10.1016/j.bios.2010.10.001 (2011).
Google Scholar
Saetang, J. et al. Multiplex PCR-Lateral flow dipstick method for detection of thermostable direct hemolysin (TDH) producing V. parahaemolyticus. Biosensors 13 https://doi.org/10.3390/bios13070698 (2023).
Liu, H., Tian, W., Zan, L., Wang, H. & Cui, H. J. A. J. O. B. Association of MC4R gene variants with carcass and meat quality traits in Qinchuan cattle. 8, 3666–3671 (2010).
Davoli, R. et al. Analysis of MC4R polymorphism in Italian large white and Italian duroc pigs: association with carcass traits. Meat Sci. 90, 887–892. https://doi.org/10.1016/j.meatsci.2011.11.025 (2012).
Google Scholar
Seong, J., Suh, D. S., Park, K. D., Lee, H. K. & Kong, H. S. Identification and analysis of MC4R polymorphisms and their association with economic traits of Korean cattle (Hanwoo). Mol. Biol. Rep. 39, 3597–3601. https://doi.org/10.1007/s11033-011-1133-3 (2012).
Google Scholar
Zuo, B. et al. Melanocortin-4 receptor (MC4R) polymorphisms are associated with growth and meat quality traits in sheep. Mol. Biol. Rep. 41, 6967–6974. https://doi.org/10.1007/s11033-014-3583-x (2014).
Google Scholar
Zeng, R., Zhang, Y. & Du, P. SNPs of melanocortin 4 receptor (MC4R) associated with body weight in beagle dogs. Exp. Anim. 63, 73–80. https://doi.org/10.1538/expanim.63.73 (2014).
Google Scholar
Huili, S. et al. Association of the melanocortin 4 receptor (MC4R) gene polymorphism with growth traits of Hu sheep. Small Ruminant Res. 192, 1–7. https://doi.org/10.1016/j.smallrumres.2020.106206 (2020).
Google Scholar
Gibbs, R. A. DNA amplification by the polymerase chain reaction. Anal. Chem. 62, 1202–1214. https://doi.org/10.1021/ac00212a004 (1990).
Google Scholar
Braasch, D. A. & Corey, D. R. Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem. Biol. 8, 1–7. https://doi.org/10.1016/s1074-5521(00)00058-2 (2001).
Google Scholar
Mirasoli, M. et al. Development of a chemiluminescence-based quantitative lateral flow immunoassay for on-field detection of 2,4,6-trinitrotoluene. Anal. Chim. Acta. 721, 167–172. https://doi.org/10.1016/j.aca.2012.01.036 (2012).
Google Scholar
Le, T., Yan, P., Xu, J. & Hao, Y. A novel colloidal gold-based lateral flow immunoassay for rapid simultaneous detection of cyromazine and melamine in foods of animal origin. Food Chem. 138, 1610–1615. https://doi.org/10.1016/j.foodchem.2012.11.077 (2013).
Google Scholar
Liu, C. et al. Lateral flow immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents. Anal. Chem. 83, 6778–6784. https://doi.org/10.1021/ac201462d (2011).
Google Scholar
Xing, C. et al. Ultrasensitive immunochromatographic assay for the simultaneous detection of five chemicals in drinking water. Biosens. Bioelectron. 66, 445–453. https://doi.org/10.1016/j.bios.2014.12.004 (2015).
Google Scholar
Yang, X. et al. Establishment of a lateral flow colloidal gold immunoassay strip for the rapid detection of estradiol in milk samples. LWT – Food Sci. Technol. 64, 88–94. https://doi.org/10.1016/j.lwt.2015.04.022 (2015).
Google Scholar
Shihong Gao, D., Zhu, X. & Lu, B. Development and application of sensitive, specific, and rapid CRISPR-Cas13-based diagnosis. J. Med. Virol. 93, 4198–4204. https://doi.org/10.1002/jmv.26889 (2021).
Google Scholar
Li, Z. et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J. Med. Virol. 92, 1518–1524. https://doi.org/10.1002/jmv.25727 (2020).
Google Scholar