Coordination of virulence factors and lifestyle transition in Pseudomonas aeruginosa through single-cell analysis

  • Fernández-Barat, L. et al. Intensive care unit-acquired pneumonia due to Pseudomonas aeruginosa with and without multidrug resistance. J. Infect. 74, 142–152 (2017).

    PubMed 

    Google Scholar 

  • Rossi, E. et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat. Rev. Microbiol. 19, 331–342 (2021).

    PubMed 

    Google Scholar 

  • Wood, S. J., Kuzel, T. M. & Shafikhani, S. H. Pseudomonas aeruginosa: infections, animal modeling, and therapeutics. Cells 12, 199 (2023).

  • Lorusso, A. B., Carrara, J. A., Barroso, C. D. N., Tuon, F. F. & Faoro, H. Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. Int. J. Mol. Sci. 23, 15779 (2022).

  • Organization, W. H. WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance, to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance. (World Health Organization, 2024).

  • Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).

    PubMed 

    Google Scholar 

  • Yang, J. J., Tsuei, K.-S. C. & Shen, E. P. The role of type III secretion system in the pathogenesis of Pseudomonas aeruginosa microbial keratitis. Tzu Chi Med. J. 34, 8–14 (2022).

    PubMed 

    Google Scholar 

  • Muggeo, A., Coraux, C. & Guillard, T. Current concepts on Pseudomonas aeruginosa interaction with human airway epithelium. PLoS Pathog. 19, e1011221 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Notti, R. Q. & Stebbins, C. E. The structure and function of type III secretion systems. Microbiol. Spectr. 4, 1–30 (2016).

  • Yahr, T. L. & Wolfgang, M. C. Transcriptional regulation of the Pseudomonas aeruginosa type III secretion system. Mol. Microbiol. 62, 631–640 (2006).

    PubMed 

    Google Scholar 

  • Urbanowski, M. L., Lykken, G. L. & Yahr, T. L. A secreted regulatory protein couples transcription to the secretory activity of the Pseudomonas aeruginosa type III secretion system. Proc. Natl Acad. Sci. USA 102, 9930–9935 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vakulskas, C. A., Brady, K. M. & Yahr, T. L. Mechanism of Transcriptional Activation by Pseudomonas aeruginosa ExsA. J. Bacteriol. 191, 6654–6664 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • McCaw, M. L., Lykken, G. L., Singh, P. K. & Yahr, T. L. ExsD is a negative regulator of the Pseudomonas aeruginosa type III secretion regulon. Mol. Microbiol. 46, 1123–1133 (2002).

    PubMed 

    Google Scholar 

  • Wagner, S. et al. Bacterial type III secretion systems: a complex device for the delivery of bacterial effector proteins into eukaryotic host cells. FEMS Microbiol. Lett. 365, fny201 (2018).

  • Forsberg, Å, Viitanen, A.-M., Skurnik, M. & Wolf-Watz, H. The surface-located YopN protein is involved in calcium signal transduction in Yersinia pseudotuberculosis. Mol. Microbiol. 5, 977–986 (1991).

    PubMed 

    Google Scholar 

  • Joseph, S. S. & Plano, G. V. The SycN/YscB chaperone-binding domain of YopN is required for the calcium-dependent regulation of Yop secretion by Yersinia pestis. Front. Cell Infect. Microbiol. 3, 1 (2013).

  • Ngo, T.-D. et al. The PopN gate-keeper complex acts on the ATPase PscN to regulate the T3SS secretion switch from early to middle substrates in Pseudomonas aeruginosa. J. Mol. Biol. 432, 166690 (2020).

    PubMed 

    Google Scholar 

  • Horna, G. & Ruiz, J. Type 3 secretion system of Pseudomonas aeruginosa. Microbiol. Res. 246, 126719 (2021).

    PubMed 

    Google Scholar 

  • Sana, T. G., Berni, B. & Bleves, S. The T6SSs of Pseudomonas aeruginosa strain PAO1 and their effectors: beyond bacterial-cell targeting. Front. Cell Infect. Microbiol. 6, 61 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Habich, A. et al. Distribution of the four type VI secretion systems in Pseudomonas aeruginosa and classification of their core and accessory effectors. Nat. Commun. 16, 888 (2025).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hood, R. D. et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7, 25–37 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Colautti, J., Kelly, S. D. & Whitney, J. C. Specialized killing across the domains of life by the type VI secretion systems of Pseudomonas aeruginosa. Biochem. J. 482, 1–15 (2025).

    PubMed 

    Google Scholar 

  • Basler, M., Ho, B. T. & Mekalanos, J. J. Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell 152, 884–894 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, L., Zou, Y., She, P. & Wu, Y. Composition, function, and regulation of T6SS in Pseudomonas aeruginosa. Microbiol Res. 172, 19–25 (2015).

    PubMed 

    Google Scholar 

  • Stolle, A.-S., Meader, B. T., Toska, J. & Mekalanos, J. J. Endogenous membrane stress induces T6SS activity in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 118, e2018365118 (2021).

  • Nolan, L. M. et al. Identification of Tse8 as a Type VI secretion system toxin from Pseudomonas aeruginosa that targets the bacterial transamidosome to inhibit protein synthesis in prey cells. Nat. Microbiol. 6, 1199–1210 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • González-Magaña, A. et al. The P. aeruginosa effector Tse5 forms membrane pores disrupting the membrane potential of intoxicated bacteria. Commun. Biol. 5, 1189 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Le, N.-H., Pinedo, V., Lopez, J., Cava, F. & Feldman, M. F. Killing of Gram-negative and Gram-positive bacteria by a bifunctional cell wall-targeting T6SS effector. Proc. Natl Acad. Sci. USA 118, e2106555118 (2021).

  • Pissaridou, P. et al. The Pseudomonas aeruginosa T6SS-VgrG1b spike is topped by a PAAR protein eliciting DNA damage to bacterial competitors. Proc. Natl Acad. Sci. USA 115, 12519–12524 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Russell, A. B. et al. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475, 343–347 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ross, P. et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325, 279–281 (1987).

  • Hickman, J. W., Tifrea, D. F. & Harwood, C. S. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc. Natl Acad. Sci. USA 102, 14422–14427 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ryan, R. P. et al. HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa. Environ. Microbiol. 11, 1126–1136 (2009).

    PubMed 

    Google Scholar 

  • Guttenplan, S. B. & Kearns, D. B. Regulation of flagellar motility during biofilm formation. FEMS Microbiol. Rev. 37, 849–871 (2013).

    PubMed 

    Google Scholar 

  • Wang, T., Hua, C. & Deng, X. c-di-GMP signaling in Pseudomonas syringae complex. Microbiol. Res. 275, 127445 (2023).

    PubMed 

    Google Scholar 

  • Hengge, R. Principles of c-di-GMP signalling in bacteria. Nat. Rev. Microbiol. 7, 263–273 (2009).

    PubMed 

    Google Scholar 

  • Jenal, U. & Malone, J. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Genet. 40, 385–407 (2006).

    PubMed 

    Google Scholar 

  • Matsuyama, B. Y. et al. Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 113, E209–E218 (2016).

    PubMed 

    Google Scholar 

  • Hickman, J. W. & Harwood, C. S. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol. Microbiol. 69, 376–389 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Connor, J. R., Kuwada, N. J., Huangyutitham, V., Wiggins, P. A. & Harwood, C. S. Surface sensing and lateral subcellular localization of WspA, the receptor in a chemosensory-like system leading to c-di-GMP production. Mol. Microbiol. 86, 720–729 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Baraquet, C., Murakami, K., Parsek, M. R. & Harwood, C. S. The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP. Nucleic Acids Res. 40, 7207–7218 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, V. T. et al. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol. Microbiol. 65, 1474–1484 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gheorghita, A. A., Wozniak, D. J., Parsek, M. R. & Howell, P. L. Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation. FEMS Microbiol. Rev. 47, fuad060 (2023).

  • Gupta, K., Liao, J., Petrova, O. E., Cherny, K. E. & Sauer, K. Elevated levels of the second messenger c-di-GMP contribute to antimicrobial resistance of Pseudomonas aeruginosa. Mol. Microbiol. 92, 488–506 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, G.-L., Chandra, H. & Liang, Z.-X. Taming the flagellar motor of pseudomonads with a nucleotide messenger. Environ. Microbiol. 22, 2496–2513 (2020).

    PubMed 

    Google Scholar 

  • Roy, A. B., Petrova, O. E. & Sauer, K. The Phosphodiesterase DipA (PA5017) Is Essential for Pseudomonas aeruginosa Biofilm Dispersion. J. Bacteriol. 194, 2904–2915 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Furukawa, S., Kuchma, S. L. & O’Toole, G. A. Keeping their options open: acute versus persistent infections. J. Bacteriol. 188, 1211–1217 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ciofu, O., Mandsberg, L. F., Wang, H. & Høiby, N. Phenotypes selected during chronic lung infection in cystic fibrosis patients: implications for the treatment of Pseudomonas aeruginosa biofilm infections. FEMS Immunol. Med. Microbiol. 65, 215–225 (2012).

    PubMed 

    Google Scholar 

  • Hall, K. M., Pursell, Z. F. & Morici, L. A. The role of the Pseudomonas aeruginosa hypermutator phenotype on the shift from acute to chronic virulence during respiratory infection. Front. Cell Infect. Microbiol. 12, 943346 (2022).

  • Mikkelsen, H., Sivaneson, M. & Filloux, A. Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ. Microbiol. 13, 1666–1681 (2011).

    PubMed 

    Google Scholar 

  • Allsopp, L. P. et al. RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 114, 7707–7712 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mulcahy, H., O’Callaghan, J., O’Grady, E. P., Adams, C. & O’Gara, F. The posttranscriptional regulator RsmA plays a role in the interaction between Pseudomonas aeruginosa and human airway epithelial cells by positively regulating the type III secretion system. Infect. Immun. 74, 3012–3015 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Francis, V. I., Stevenson, E. C. & Porter, S. L. Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 364, fnx104 (2017).

  • Broder, U. N., Jaeger, T. & Jenal, U. LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa. Nat. Microbiol. 2, 16184 (2016).

    PubMed 

    Google Scholar 

  • Arbel-Goren, R., Tal, A. & Stavans, J. Phenotypic noise: effects of post-transcriptional regulatory processes affecting mRNA. Wiley Interdiscip. Rev. RNA 5, 197–207 (2014).

    PubMed 

    Google Scholar 

  • Vakulskas, C. A., Potts, A. H., Babitzke, P., Ahmer, B. M. M. & Romeo, T. Regulation of bacterial virulence by Csr (Rsm) systems. Microbiol. Mol. Biol. Rev. 79, 193–224 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Moscoso, J. A., Mikkelsen, H., Heeb, S., Williams, P. & Filloux, A. The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ. Microbiol. 13, 3128–3138 (2011).

    PubMed 

    Google Scholar 

  • Zhou, T. et al. The two-component system FleS/FleR represses H1-T6SS via cyclic di-GMP signaling in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 88, e0165521 (2022).

    PubMed 

    Google Scholar 

  • Nie, H. et al. Wsp system oppositely modulates antibacterial activity and biofilm formation via FleQ-FleN complex in Pseudomonas putida. Environ. Microbiol. 24, 1543–1559 (2022).

    PubMed 

    Google Scholar 

  • Lyng, M. & Kovács, Á. T. Microbial ecology: metabolic heterogeneity and the division of labor in multicellular structures. Curr. Biol. 32, R771–R774 (2022).

    PubMed 

    Google Scholar 

  • Marsden, A. E. et al. Vfr directly activates exsA transcription to regulate expression of the Pseudomonas aeruginosa type III secretion system. J. Bacteriol. 198, 1442–1450 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Laventie, B.-J. et al. A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa. Cell Host Microbe 25, 140–152.e6 (2019).

    PubMed 

    Google Scholar 

  • Laventie, B.-J. & Jenal, U. Surface sensing and adaptation in bacteria. Annu. Rev. Microbiol 74, 735–760 (2020).

    PubMed 

    Google Scholar 

  • Weigel, W. A. & Dersch, P. Phenotypic heterogeneity: a bacterial virulence strategy. Microbes Infect. 20, 570–577 (2018).

    PubMed 

    Google Scholar 

  • Christen, M. et al. Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science 328, 1295–1297 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Valentini, M. & Filloux, A. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and Other Bacteria. J. Biol. Chem. 291, 12547–12555 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, L. et al. A toolbox of FRET-based c-di-GMP biosensors and its FRET-To-Sort application for genome-wide mapping of the second messenger regulatory network. Preprint at https://doi.org/10.1101/2024.08.21.609041 (2024).

  • Wang, T. et al. Pleiotropic effects of c-di-GMP content in Pseudomonas syringae. Appl. Environ. Microbiol. 85, e00152-19 (2019).

  • Christen, M. et al. Identification of small-molecule modulators of diguanylate cyclase by FRET-based high-throughput screening. ChemBioChem 20, 394–407 (2019).

    PubMed 

    Google Scholar 

  • Ko, M. & Park, C. Two novel flagellar components and H-NS are involved in the motor function of Escherichia coli. J. Mol. Biol. 303, 371–382 (2000).

    PubMed 

    Google Scholar 

  • Diepold, A., Kudryashev, M., Delalez, N. J., Berry, R. M. & Armitage, J. P. Composition, formation, and regulation of the cytosolic C-ring, a dynamic component of the type III secretion injectisome. PLoS Biol. 13, e1002039 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wimmi, S. et al. Cytosolic sorting platform complexes shuttle type III secretion system effectors to the injectisome in Yersinia enterocolitica. Nat. Microbiol. 9, 185–199 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chua, S. L. et al. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat. Commun. 5, 4462 (2014).

    PubMed 

    Google Scholar 

  • Liebl, D., Robert-Genthon, M., Job, V., Cogoni, V. & Attrée, I. Baseplate component TssK and spatio-temporal assembly of T6SS in Pseudomonas aeruginosa. Front. Microbiol. 10, 1615 (2019).

  • Records, A. R. & Gross, D. C. Sensor kinases RetS and LadS regulate Pseudomonas syringae type VI secretion and virulence factors. J. Bacteriol. 192, 3584–3596 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Basler, M. & Mekalanos, J. J. Type 6 secretion dynamics within and between bacterial cells. Science 337, 815–815 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Baker, A. E. et al. Flagellar stators stimulate c-di-GMP production by Pseudomonas aeruginosa. J. Bacteriol. 201, e00741–18 (2019).

  • Kulasekara, B. R. et al. c-di-GMP heterogeneity is generated by the chemotaxis machinery to regulate flagellar motility. Elife 2, e01402 (2013).

  • Kilmury, S. L. N. & Burrows, L. L. The Pseudomonas aeruginosa PilSR two-component system regulates both twitching and swimming motilities. mBio 9, e01310–18 (2018).

  • Soscia, C., Hachani, A., Bernadac, A., Filloux, A. & Bleves, S. Cross talk between type III secretion and flagellar assembly systems in Pseudomonas aeruginosa. J. Bacteriol. 189, 3124–3132 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Oladosu, V. I., Park, S. & Sauer, K. Flip the switch: the role of FleQ in modulating the transition between the free-living and sessile mode of growth in Pseudomonas aeruginosa. J. Bacteriol. 206, e0036523 (2024).

  • Zhang, X. et al. NrtR mediated regulation of H1-T6SS in Pseudomonas aeruginosa. Microbiol. Spectr. 10, e01858-21 (2022).

  • Dadashi, M., Chen, L., Nasimian, A., Ghavami, S. & Duan, K. Putative RNA ligase RtcB affects the switch between T6SS and T3SS in Pseudomonas aeruginosa. Int. J. Mol. Sci. 22, 12561 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wimmi, S. et al. Dynamic relocalization of cytosolic type III secretion system components prevents premature protein secretion at low external pH. Nat. Commun. 12, 1625 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Almblad, H. et al. Erratum for Almblad et al., the cyclic AMP-Vfr signaling pathway in Pseudomonas aeruginosa is inhibited by cyclic Di-GMP. J. Bacteriol. 197, 2731–2731 (2015).

    PubMed 

    Google Scholar 

  • Dasgupta, N., Ferrell, E. P., Kanack, K. J., West, S. E. H. & Ramphal, R. fleQ, the gene encoding the major flagellar regulator of Pseudomonas aeruginosa, Is σ 70 dependent and is downregulated by Vfr, a homolog of Escherichia coli Cyclic AMP receptor protein. J. Bacteriol. 184, 5240–5250 (2002).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y., Chen, L., Zhang, P., Bhagirath, A. Y. & Duan, K. ClpV3 of the H3-Type VI secretion system (H3-T6SS) affects multiple virulence factors in Pseudomonas aeruginosa. Front. Microbiol. 11, 1096 (2020).

  • Rietsch, A. & Mekalanos, J. J. Metabolic regulation of type III secretion gene expression in Pseudomonas aeruginosa. Mol. Microbiol. 59, 807–820 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo, Y. et al. A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors. mBio 6, e02456–14 (2015).

  • Speare, L., Jackson, A. & Septer, A. N. Calcium promotes T6SS-mediated killing and aggregation between competing symbionts. Microbiol. Spectr. 10, e0139722 (2022).

  • Lu, D. et al. Structural insights into the T 6 SS effector protein Tse 3 and the Tse 3– Tsi 3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism. Mol. Microbiol. 92, 1092–1112 (2014).

    PubMed 

    Google Scholar 

  • Li, S. et al. Autoinducer-2 and bile salts induce c-di-GMP synthesis to repress the T3SS via a T3SS chaperone. Nat. Commun. 13, 6684 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Belhart, K., Sisti, F., Gestal, M. C. & Fernández, J. Bordetella bronchiseptica diguanylate cyclase BdcB inhibits the type three secretion system and impacts the immune response. Sci. Rep. 13, 7157 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cai, Y. & Webb, J. S. Optimization of nitric oxide donors for investigating biofilm dispersal response in Pseudomonas aeruginosa clinical isolates. Appl. Microbiol. Biotechnol. 104, 8859–8869 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Muhl, D. & Filloux, A. Site-directed mutagenesis and gene deletion using reverse genetics. Methods Mol. Biol. 1149, 521–539 (2014).

  • Schlechter, R. O. et al. Chromatic bacteria—a broad host-range plasmid and chromosomal insertion toolbox for fluorescent protein expression in bacteria. Front. Microbiol. 9, 3052 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chuanchuen, R., Narasaki, C. T. & Schweizer, H. P. Benchtop and microcentrifuge preparation of Pseudomonas aeruginosa competent cells. Biotechniques 33, 760–763 (2002).

    PubMed 

    Google Scholar 

  • Lampaki, D., Diepold, A. & Glatter, T. In-depth quantitative proteomics analysis of the Pseudomonas aeruginosa secretome. Methods Mol. Biol. 2721, 197–211 (2024).

  • Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).

    PubMed 

    Google Scholar 

  • Ahrné, E., Molzahn, L., Glatter, T. & Schmidt, A. Critical assessment of proteome-wide label-free absolute abundance estimation strategies. Proteomics 13, 2567–2578 (2013).

    PubMed 

    Google Scholar 

  • Glatter, T. et al. Large-scale quantitative assessment of different in-solution protein digestion protocols reveals superior cleavage efficiency of tandem Lys-C/trypsin proteolysis over trypsin digestion. J. Proteome Res. 11, 5145–5156 (2012).

    PubMed 

    Google Scholar 

  • Skruzny, M., Pohl, E., Gnoth, S., Malengo, G. & Sourjik, V. The protein architecture of the endocytic coat analyzed by FRET microscopy. Mol. Syst. Biol. 16, e9009 (2020).

  • Yadavalli, S. S. et al. Functional determinants of a small protein controlling a broadly conserved bacterial sensor kinase. J. Bacteriol. 202, e00305–20 (2020).

  • Roszik, J., Szöllősi, J. & Vereb, G. AccPbFRET: an ImageJ plugin for semi-automatic, fully corrected analysis of acceptor photobleaching FRET images. BMC Bioinformatics 9, 346 (2008).

  • Coffey, B. M. & Anderson, G. G. Biofilm formation in the 96-well microtiter plate. Methods Mol. Biol. 1149, 631–641 (2014).

  • Ha, D.-G., Kuchma, S. L. & O’Toole, G. A. Plate-based assay for swimming motility in Pseudomonas aeruginosa. Methods Mol. Biol. 1149, 59–65 (2014).

  • Colley, B. et al. SiaA/D interconnects c-di-GMP and RsmA signaling to coordinate cellular aggregation of Pseudomonas aeruginosa in response to environmental conditions. Front. Microbiol. 7, 179 (2016).

  • Brencic, A. & Lory, S. Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol. Microbiol. 72, 612–632 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Burrowes, E., Baysse, C., Adams, C. & O’Gara, F. Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. Microbiology 152, 405–418 (2006).

    PubMed 

    Google Scholar 

  • Continue Reading