Leach, J. E., Triplett, L. R., Argueso, C. T. & Trivedi, P. Communication in the phytobiome. Cell 169, 587–596 (2017).
Google Scholar
Stone, B. W. G., Weingarten, E. A. & Jackson, C. R. The role of the phyllosphere microbiome in plant health and function. in Annual Plant Reviews Online 533–556 (John Wiley & Sons, Ltd, https://doi.org/10.1002/9781119312994.apr0614 (2018).
Rodriguez, R. J. & Redman, R. S. Fungal life-styles and ecosystem dynamics: biological aspects of plant pathogens, plant endophytes and saprophytes. in Advances in Botanical Research (eds Andrews, J. H., Tommerup, I. C. & Callow, J. A.) vol. 24 169–193 (Academic, (1997).
Baron, N. C. & Rigobelo, E. C. Endophytic fungi: a tool for plant growth promotion and sustainable agriculture. Mycology 13, 39–55 (2022).
Google Scholar
Di Francesco, A. et al. Biocontrol activity and plant growth promotion exerted by Aureobasidium pullulans strains. J. Plant. Growth Regul. 40, 1233–1244 (2021).
Albrectsen, B. R. et al. Endophytic fungi in European Aspen (Populus tremula) leaves—diversity, detection, and a suggested correlation with herbivory resistance. Fungal Divers. 41, 17–28 (2010).
Cambon, M. C. et al. Drought tolerance traits in Neotropical trees correlate with the composition of phyllosphere fungal communities. Phytobiomes J. 7:2, 244-258 (2023). https://doi.org/10.1094/PBIOMES-04-22-0023-R
Bettenfeld, P., Fontaine, F., Trouvelot, S., Fernandez, O. & Courty, P. E. Woody plant declines. What’s wrong with the microbiome? Trends Plant. Sci. 25, 381–394 (2020).
Google Scholar
Noel, Z. A. et al. Non-target impacts of fungicide disturbance on phyllosphere yeasts in conventional and no-till management. ISME Commun. 2, 19 (2022).
Google Scholar
Castañeda, L. E., Miura, T., Sánchez, R. & Barbosa, O. Effects of agricultural management on phyllosphere fungal diversity in vineyards and the association with adjacent native forests. PeerJ 6, e5715 (2018).
Varanda, C. M. R. et al. Fungal endophytic communities associated to the phyllosphere of grapevine cultivars under different types of management. Fungal Biol. 120, 1525–1536 (2016).
Google Scholar
Paasch, B. C. & He, S. Y. Toward Understanding microbiota homeostasis in the plant Kingdom. PLoS Pathog. 17, e1009472 (2021).
Google Scholar
Prior, R., Mittelbach, M. & Begerow, D. Impact of three different fungicides on fungal epi- and endophytic communities of common bean (Phaseolus vulgaris) and broad bean (Vicia faba). J. Environ. Sci. Health B. 52, 376–386 (2017).
Google Scholar
Lin, H. A. & Mideros, S. X. The effect of Septoria Glycines and fungicide application on the soybean phyllosphere mycobiome. Phytobiomes J. 7:2, 220-232 (2023). https://doi.org/10.1094/PBIOMES-12-21-0075-R
Bertelsen, J. R., De Neergaard, E. & Smedegaard-Petersen, V. Fungicidal effects of azoxystrobin and Epoxiconazole on phyllosphere fungi, senescence and yield of winter wheat. Plant. Pathol. 50, 190–205 (2001).
Google Scholar
Perazzolli, M. et al. Resilience of the natural phyllosphere microbiota of the grapevine to chemical and biological pesticides. Appl. Environ. Microbiol. 80, 3585–3596 (2014).
Google Scholar
Karlsson, I., Friberg, H., Steinberg, C. & Persson, P. Fungicide effects on fungal community composition in the wheat phyllosphere. PLoS ONE. 9, e111786 (2014).
Google Scholar
Knorr, K., Jørgensen, L. N. & Nicolaisen, M. Fungicides have complex effects on the wheat phyllosphere mycobiome. PLOS ONE. 14, e0213176 (2019).
Google Scholar
Sapkota, R., Knorr, K., Jørgensen, L. N., O’Hanlon, K. A. & Nicolaisen, M. Host genotype is an important determinant of the cereal phyllosphere mycobiome. New. Phytol. 207, 1134–1144 (2015).
Google Scholar
Milazzo, C. et al. High-throughput metabarcoding characterizes fungal endophyte diversity in the phyllosphere of a barley crop. Phytobiomes J. 5, 316–325 (2021).
Win, P. M., Matsumura, E. & Fukuda, K. Effects of pesticides on the diversity of endophytic fungi in tea plants. Microb. Ecol. 82, 62–72 (2021).
Google Scholar
Doherty, J. R., Botti-Marino, M., Kerns, J. P., Ritchie, D. F. & Roberts, J. A. Response of microbial populations on the creeping bentgrass phyllosphere to periodic fungicide applications. Plant. Health Prog. 18, 44–49 (2017).
Katsoula, A., Vasileiadis, S., Sapountzi, M. & Karpouzas, D. G. The response of soil and phyllosphere microbial communities to repeated application of the fungicide iprodione: accelerated biodegradation or toxicity? FEMS Microbiol. Ecol. 96, fiaa056 (2020).
Google Scholar
Baumann, A. J. et al. High tolerance and degradation of fungicides by fungal strains isolated from contaminated soils. Mycologia 114, 813–824 (2022).
Google Scholar
Batdorf, L. R. Boxwood Handbook: A Practical Guide To Knowing and Growing Boxwood (American Boxwood Society, 1995).
Ivors, K. L. et al. First report of Boxwood blight caused by Cylindrocladium pseudonaviculatum in the united States. Plant. Dis. 96, 1070–1070 (2012).
Google Scholar
Daughtrey, M. L. Boxwood blight: threat to ornamentals. Annu. Rev. Phytopathol. 57, 189–209 (2019).
Google Scholar
Hong, C. Fighting plant pathogens together. Science 365, 229–229 (2019).
Google Scholar
LaMondia, J. A. Management of Calonectria pseudonaviculata in Boxwood with fungicides and less susceptible host species and varieties. Plant. Dis. 99, 363–369 (2015).
Google Scholar
LaMondia, J. A. Fungicide efficacy against Calonectria pseudonaviculata, causal agent of Boxwood blight. Plant. Dis. 98, 99–102 (2014).
Google Scholar
LaMondia, J. A. Curative fungicide activity against Calonectria pseudonaviculata, the Boxwood blight pathogen. J. Environ. Hortic. 38, 44–49 (2020).
Google Scholar
Singh, R. & Doyle, V. P. Boxwood dieback caused by Colletotrichum theobromicola: A diagnostic guide. Plant. Health Prog. 18, 174–180 (2017).
Kaur, H., Singh, R., Doyle, V. & Valverde, R. A diagnostic TaqMan real-time PCR assay for in planta detection and quantification of Colletotrichum theobromicola, causal agent of Boxwood dieback. Plant. Dis. 105, 2395–2401 (2021).
Google Scholar
Yang, X. et al. A diagnostic guide for volutella blight affecting Buxaceae. Plant. Health Prog. 22, 578–590 (2021).
Baysal-Gurel, F., Bika, R., Avin, F. A., Jennings, C. & Simmons, T. Occurrence of volutella blight caused by Pseudonectria foliicola on Boxwood in Tennessee. Plant. Dis. 105, 2014 (2021).
Shin, S., Kim, J. E. & Son, H. Identification and characterization of fungal pathogens associated with Boxwood diseases in the Republic of Korea. Plant. Pathol. J. 38, 304–312 (2022).
Google Scholar
Akıllı Şimşek, S., Katırcıoğlu, Y. Z., Çakar, D., Rigling, D. & Maden, S. Impact of fungal diseases on common box (Buxus sempervirens L.) vegetation in Turkey. Eur. J. Plant. Pathol. 153, 1203–1220 (2019).
Vettraino, A. M., Franceschini, S. & Vannini, A. First report of Buxus rotundifolia root and collar rot caused by Phytophthora Citrophthora in Italy. Plant. Dis. 94, 272–272 (2010).
Google Scholar
Parajuli, M., Neupane, S., Liyanapathiranage, P. & Baysal-Gurel, F. Comparative performance of fungicides in management of Phytophthora root rot on Boxwood. (2023). https://doi.org/10.21273/HORTSCI17227-23
Boxwood blight task force. (2024). https://www.ext.vt.edu/content/ext_vt_edu/en/agriculture/commercial-horticulture/boxwood-blight.html. Accessed July 1.
Edgington, L. V. Systemic fungicides: A perspective after 10 years. Plant. Dis. 64, 19 (1980).
Google Scholar
Morakotkarn, D. et al. Taxonomic characterization of Shiraia-like fungi isolated from bamboos in Japan. Mycoscience 49, 258–265 (2008).
Google Scholar
Cheng, T. F., Jia, X. M., Ma, X. H., Lin, H. & Zhao, Y. H. Phylogenetic study on Shiraia bambusicola by rDNA sequence analyses. J. Basic. Microbiol. 44, 339–350 (2004).
Google Scholar
Zhu, D., Wang, J., Zeng, Q., Zhang, Z. & Yan, R. A novel endophytic huperzine A–producing fungus, Shiraia sp. Slf14, isolated from Huperzia serrata. J. Appl. Microbiol. 109, 1469–1478 (2010).
Google Scholar
Lin, X. et al. Transferrin-modified nanoparticles for photodynamic therapy enhance the antitumor efficacy of hypocrellin A. Front Pharmacol 8:815 (2017).
Kong, P., Sharifi, M., Bordas, A. & Hong, C. Differential tolerance to Calonectria pseudonaviculata of english Boxwood plants associated with the complexity of culturable fungal and bacterial endophyte communities. Plants 10, 2244 (2021).
Google Scholar
Alves, J. L., Woudenberg, J. H. C., Duarte, L. L., Crous, P. W. & Barreto, R. W. Reappraisal of the genus Alternariaster (Dothideomycetes). Persoonia 31, 77–85 (2013).
Google Scholar
LeBlanc, N. & Crouch, J. A. Prokaryotic taxa play keystone roles in the soil Microbiome associated with Woody perennial plants in the genus Buxus. Ecol. Evol. 9, 11102–11111 (2019).
Google Scholar
Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).
Kurzawińska, H., Mazur, S. & Nawrocki, J. Microorganisms colonizing the leaves, shoots and roots of Boxwood (Buxus sempervirens L). Acta Sci. Pol. Hortorum Cultus. 18, 149–154 (2019).
Smedegaard-Petersen, V. Increased demand for respiratory energy of barley leaves reacting hypersensitively against Erysiphe graminis, Pyrenophora Teres and Pyrenophora Graminea. J. Phytopathol. 99, 54–62 (1980).
Boddy, L. & Hiscox, J. Fungal ecology: principles and mechanisms of colonization and competition by saprotrophic fungi. Microbiol Spectr 4:10.1128/microbiolspec.funk-0019-2016 (2016). https://doi.org/10.1128/microbiolspec.funk-0019-2016
Liu, F. et al. Correlation between the synthesis of Pullulan and melanin in Aureobasidium Pullulans. Int. J. Biol. Macromol. 177, 252–260 (2021).
Google Scholar
Mannaa, M. et al. Aureobasidium pullulans treatment mitigates drought stress in Abies Koreana via rhizosphere Microbiome modulation. Plants 12, 3653 (2023).
Google Scholar
van Nieuwenhuijzen, E. J. & Aureobasidium Academic Press, Oxford,. in Encyclopedia of Food Microbiology (Second Edition) (eds. Batt, C. A. & Tortorello, M. L.) 105–109 (2014). https://doi.org/10.1016/B978-0-12-384730-0.00017-3
Wang, M. & Cernava, T. Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity. Environ. Sci. Ecotechnol. 4, 100061 (2020).
Google Scholar
Arnault, G., Mony, C. & Vandenkoornhuyse, P. Plant microbiota dysbiosis and the Anna karenina principle. Trends Plant. Sci. 28, 18–30 (2022).
Google Scholar
Berg, G. et al. Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol. Ecol 93:5, fix050 (2017). https://doi.org/10.1093/femsec/fix050
Runge, P., Ventura, F., Kemen, E. & Stam, R. Distinct phyllosphere Microbiome of wild tomato species in central Peru upon dysbiosis. Microb. Ecol. 85, 168–183 (2023).
Google Scholar
Lichiheb, N. et al. Measuring leaf penetration and volatilization of Chlorothalonil and Epoxiconazole applied on wheat leaves in a laboratory-scale experiment. J. Environ. Qual. 44, 1782–1790 (2015).
Google Scholar
Pinto, C. et al. Unravelling the diversity of grapevine Microbiome. PLOS ONE. 9, e85622 (2014).
Google Scholar
Sumbula, V., Kurian, P. S., Girija, D. & Cherian, K. A. Impact of foliar application of fungicides on tomato leaf fungal community structure revealed by metagenomic analysis. Folia Microbiol. 67, 103–108 (2022).
Google Scholar
Sieber, T. N. Chapter 6 – The phyllosphere mycobiome of woody plants. in Forest Microbiology (eds. Asiegbu, F. O. & Kovalchuk, A.) 111–132Academic Press, (2021). https://doi.org/10.1016/B978-0-12-822542-4.00003-6
Santra, H. K. & Banerjee, D. Fungal endophytes: A source for biological control agents. in Agriculturally Important Fungi for Sustainable Agriculture: Volume 2: Functional Annotation for Crop Protection (eds Yadav, A. N., Mishra, S., Kour, D., Yadav, N. & Kumar, A.) 181–216 (Springer International Publishing, Cham, doi:https://doi.org/10.1007/978-3-030-48474-3_6. (2020).
McNab, E. & Hsiang, T. Naturally occurring propiconazole-tolerant fungal isolates in the phyllosphere of Agrostis stolonifera. J. Plant. Dis. Prot. 131, 1195–1201 (2024).
Google Scholar
Baćmaga, M., Wyszkowska, J. & Kucharski, J. The influence of Chlorothalonil on the activity of soil microorganisms and enzymes. Ecotoxicology 27, 1188–1202 (2018).
Google Scholar
Sjokvist, E. et al. Dissection of Ramularia leaf spot disease by integrated analysis of barley and Ramularia collo-cygni transcriptome responses. Mol. Plant. Microbe Interact. 32, 176–193 (2019).
Google Scholar
Thach, T., Munk, L., Hansen, A. L. & Jørgensen, L. N. Disease variation and chemical control of Ramularia leaf spot in sugar beet. Crop Prot. 51, 68–76 (2013).
Google Scholar
Cairney, J. W. G. Basidiomycete mycelia in forest soils: dimensions, dynamics and roles in nutrient distribution. Mycol. Res. 109, 7–20 (2005).
Google Scholar
Tripathi, M. & Joshi, Y. What are lichenized fungi? in Endolichenic Fungi: Present and Future Trends (eds Tripathi, M. & Joshi, Y.) 1–26 (Springer, Singapore, doi:https://doi.org/10.1007/978-981-13-7268-1_1. (2019).
Yan, Z., Xiong, C., Liu, H. & Singh, B. K. Sustainable agricultural practices contribute significantly to one health. J. Sustain. Agr Environ. 1, 165–176 (2022).
Saunders, R., Saunders, T., Saunders, B. & Saunders, J. Boxwood Guide (Saunders Brothers, 2018).
Avenot, H. F., King, C., Edwards, T. P., Baudoin, A. & Hong, C. X. Effects of inoculum dose, temperature, cultivar, and interrupted leaf wetness period on infection of Boxwood by Calonectria pseudonaviculata. Plant. Dis. 101, 866–873 (2017).
Google Scholar
Avenot, H. F., Baudoin, A. & Hong, C. Conidial production and viability of Calonectria pseudonaviculata on infected Boxwood leaves as affected by temperature, wetness, and dryness periods. Plant. Pathol. 71, 696–701 (2022).
Gehesquière, B. Cylindrocladium buxicola nom. cons. prop. (syn. Calonectria pseudonaviculata) on Buxus: molecular characterization, epidemiology, host resistance and fungicide controlGhent University, Belgium,. (2014).
Li, X. et al. Characterization of Boxwood shoot bacterial communities and potential impact from fungicide treatments. Microbiol. Spectr. 0, e04163–e04122 (2023).
Martin, K. J. & Rygiewicz, P. T. Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol. 5, 28 (2005).
Google Scholar
Li, X. NanoPrep. https://github.com/xpli2020/NanoPrep. Accessed July 1. (2024).
Cuscó, A., Catozzi, C., Viñes, J., Sanchez, A. & Francino, O. Microbiota profiling with long amplicons using Nanopore sequencing: full-length 16S rRNA gene and the 16S-ITS-23S of the rrn operon. F1000Rsearch vol. 7 1755 Preprint at https://doi.org/10.12688/f1000research.16817.2 (2019).
Abarenkov, K. et al. Full UNITE + INSD dataset for Fungi. UNITE Community. https://doi.org/10.15156/BIO/1281531 (2021).
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
Google Scholar
Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).
Google Scholar
Lahti, L. & Shetty, S. Tools for Microbiome analysis in R. (2017). http://microbiome.github.com/microbiome
Dunn, O. J. Multiple comparisons among means. J. Am. Stat. Assoc. 56, 52–64 (1961).
Google Scholar
Liu, C., Cui, Y., Li, X. & Yao, M. Microeco: an R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 97, fiaa255 (2021).
Google Scholar
Jaccard, P. The distribution of the flora in the alpine zone. New. Phytol. 11, 37–50 (1912).
Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).
Google Scholar
Legendre, P. & Borcard, D. Box–Cox-chord transformations for community composition data prior to beta diversity analysis. Ecography 41, 1820–1824 (2018).
Google Scholar
McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of Microbiome census data. PLOS ONE. 8, e61217 (2013).
Google Scholar
Oksanen, J. et al. vegan: Community ecology package. https://github.com/vegandevs/vegan (2019).
Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27, 325–349 (1957).
Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLOS Comput. Biol. 17, e1009442 (2021).
Google Scholar
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R Stat. Soc. Ser. B (Methodoll). 57, 289–300 (1995).
Google Scholar
Martin, V. M. et al. Longitudinal disease-associated gut Microbiome differences in infants with food protein-induced allergic Proctocolitis. Microbiome 10, 154 (2022).
Google Scholar
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).
Google Scholar
Peschel, S., Müller, C. L., von Mutius, E., Boulesteix, A. L. & Depner, M. NetCoMi: network construction and comparison for Microbiome data in R. Brief. Bioinform. 22, bbaa290 (2021).
Google Scholar
Yoon, G., Gaynanova, I. & Müller, C. L. Microbial networks in SPRING – Semi-parametric Rank-Based correlation and partial correlation Estimation for quantitative Microbiome data. Front Genet 10:516 (2019). https://doi.org/10.3389/fgene.2019.00516
Csardi, G. & Tamas nepusz. The Igraph software package for complex network research. InterJournal, Complex Systems, 1695 (2006).
Jaccard, P. Nouvelles recherches Sur La distribution Florale. (1908). https://doi.org/10.5169/SEALS-268384
Hubert, L. & Arabie, P. Comparing partitions. J. Classif. 2, 193–218 (1985).
Benjamini, Y. & Hochberg, Y. On the adaptive control of the false discovery rate in multiple testing with independent statistics. J. Educ. Behav. Stat. 25, 60–83 (2000).