Letko M, Seifert SN, Olival KJ, Plowright RK, Munster VJ. Bat-borne virus diversity, spillover and emergence. Nat Rev Microbiol. 2020;18:461–71. https://doi.org/10.1038/s41579-020-0394-z.
Google Scholar
Burgin CJ, Colella JP, Kahn PL, Upham NS. How many species of mammals are there? J Mammal. 2018;99:1–14. https://doi.org/10.1093/jmammal/gyx147.
Google Scholar
Hu B, Ge X, Wang L-F, Shi Z. Bat origin of human coronaviruses. Virol J. 2015;12:221. https://doi.org/10.1186/s12985-015-0422-1.
Google Scholar
Temmam S, Vongphayloth K, Baquero E, Munier S, Bonomi M, Regnault B, Douangboubpha B, Karami Y, Chrétien D, Sanamxay D, et al. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature. 2022;604:330–6. https://doi.org/10.1038/s41586-022-04532-4.
Google Scholar
Memish ZA, Mishra N, Olival KJ, Fagbo SF, Kapoor V, Epstein JH, Alhakeem R, Durosinloun A, Al Asmari M, Islam A, et al. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg Infect Dis. 2013;19:1819–23. https://doi.org/10.3201/eid1911.131172.
Google Scholar
Anthony SJ, Gilardi K, Menachery VD, Goldstein T, Ssebide B, Mbabazi R, Navarrete-Macias I, Liang E, Wells H, Hicks A, et al. Further evidence for bats as the evolutionary source of middle east respiratory syndrome coronavirus. mBio. 2017. https://doi.org/10.1128/mBio.00373-17.
Google Scholar
Woo PCY, de Groot RJ, Haagmans B, Lau SKP, Neuman BW, Perlman S, Sola I, van der Hoek L, Wong ACP, Yeh S-H. ICTV virus taxonomy profile: coronaviridae 2023. J Gen Virol. 2023;104. https://doi.org/10.1099/jgv.0.001843.
Yang Y, Du L, Liu C, Wang L, Ma C, Tang J, Baric RS, Jiang S, Li F. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Proc Natl Acad Sci. 2014;111:12516–21. https://doi.org/10.1073/pnas.1405889111.
Google Scholar
Lau SKP, Li KSM, Tsang AKL, Lam CSF, Ahmed S, Chen H, Chan K-H, Woo PCY, Yuen K-Y. Genetic characterization of betacoronavirus lineage C viruses in bats reveals marked sequence divergence in the spike protein of pipistrellus bat coronavirus HKU5 in Japanese Pipistrelle: implications for the origin of the novel Middle East respiratory sy. J Virol. 2013;87:8638–50. https://doi.org/10.1128/JVI.01055-13.
Google Scholar
Ithete NL, Stoffberg S, Corman VM, Cottontail VM, Richards LR, Schoeman MC, Drosten C, Drexler JF, Preiser W. Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa. Emerg Infect Dis. 2013;19:1697–9. https://doi.org/10.3201/eid1910.130946.
Google Scholar
Moreno A, Lelli D, de Sabato L, Zaccaria G, Boni A, Sozzi E, Prosperi A, Lavazza A, Cella E, Castrucci MR, et al. Detection and full genome characterization of two beta CoV viruses related to Middle East respiratory syndrome from bats in Italy. Virol J. 2017;14:239. https://doi.org/10.1186/s12985-017-0907-1.
Google Scholar
Haagmans BL, Al Dhahiry SHS, Reusken CBEM, Raj VS, Galiano M, Myers R, Godeke G-J, Jonges M, Farag E, Diab A, et al. Middle east respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect Dis. 2014;14:140–5. https://doi.org/10.1016/S1473-3099(13)70690-X.
Google Scholar
De Sabato L, Di Bartolo I, De Marco MA, Moreno A, Lelli D, Cotti C, Delogu M, Vaccari G. Can coronaviruses steal genes from the host as evidenced in Western European hedgehogs by EriCoV genetic characterization? Viruses. 2020;12:1471. https://doi.org/10.3390/v12121471.
Google Scholar
He W-T, Hou X, Zhao J, Sun J, He H, Si W, Wang J, Jiang Z, Yan Z, Xing G, et al. Virome characterization of game animals in China reveals a spectrum of emerging pathogens. Cell. 2022;185:1117-1129.e8. https://doi.org/10.1016/j.cell.2022.02.014.
Google Scholar
Wang Q, Qi J, Yuan Y, Xuan Y, Han P, Wan Y, Ji W, Li Y, Wu Y, Wang J, et al. Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26. Cell Host Microbe. 2014;16:328–37. https://doi.org/10.1016/j.chom.2014.08.009.
Google Scholar
Chen J, Yang X, Si H, Gong Q, Que T, Li J, Li Y, Wu C, Zhang W, Chen Y, et al. A bat MERS-like coronavirus circulates in pangolins and utilizes human DPP4 and host proteases for cell entry. Cell. 2023;186:850-863.e16. https://doi.org/10.1016/j.cell.2023.01.019.
Google Scholar
Luo C-M, Wang N, Yang X-L, Liu H-Z, Zhang W, Li B, Hu B, Peng C, Geng Q-B, Zhu G-J, et al. Discovery of novel bat coronaviruses in South China that use the same receptor as Middle East respiratory syndrome coronavirus. J Virol. 2018;92:e00116-18. https://doi.org/10.1128/JVI.00116-18.
Google Scholar
Yang L, Wu Z, Ren X, Yang F, Zhang J, He G, Dong J, Sun L, Zhu Y, Zhang S, et al. MERS–related betacoronavirus in Vespertilio superans bats, China. Emerg Infect Dis. 2014;20:1260–2. https://doi.org/10.3201/eid2007.140318.
Google Scholar
Corman VM, Ithete NL, Richards LR, Schoeman MC, Preiser W, Drosten C, Drexler JF. Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat. J Virol. 2014;88:11297–303. https://doi.org/10.1128/JVI.01498-14.
Google Scholar
Annan A, Baldwin HJ, Corman VM, Klose SM, Owusu M, Nkrumah EE, Badu EK, Anti P, Agbenyega O, Meyer B, et al. Human betacoronavirus 2c EMC/2012–related viruses in bats, Ghana and Europe. Emerg Infect Dis. 2013;19:456–9. https://doi.org/10.3201/eid1903.121503.
Google Scholar
Anthony SJ, Ojeda-Flores R, Rico-Chávez O, Navarrete-Macias I, Zambrana-Torrelio CM, Rostal MK, Epstein JH, Tipps T, Liang E, Sanchez-Leon M, et al. Coronaviruses in bats from Mexico. J Gen Virol. 2013;94:1028–38. https://doi.org/10.1099/vir.0.049759-0.
Google Scholar
Lelli D, Papetti A, Sabelli C, Rosti E, Moreno A, Boniotti M. Detection of coronaviruses in bats of various species in Italy. Viruses. 2013;5:2679–89. https://doi.org/10.3390/v5112679.
Google Scholar
de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE, Holmes KV, Perlman S, Poon L, Rottier PJM, Talbot PJ, et al. Family: coronaviridae. in virus Taxonomy, Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier, 2012; pp. 806–828. https://doi.org/10.1016/B978-0-12-384684-6.00068-9.
Sola I, Almazán F, Zúñiga S, Enjuanes L. Continuous and discontinuous RNA synthesis in coronaviruses. Annu Rev Virol. 2015;2:265–88. https://doi.org/10.1146/annurev-virology-100114-055218.
Google Scholar
van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, Osterhaus ADME, Haagmans BL, Gorbalenya AE, Snijder EJ, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio. 2012;3:e00473-12. https://doi.org/10.1128/mBio.00473-12.
Google Scholar
Ma C, Liu C, Xiong Q, Yu X, Chen Y, Si J, Liu P, Tong F, Huang M, Yan H. Identification of ACE2 as the entry receptor for two novel European bat merbecoviruses. bioRxiv. 2023, 2023.10.02.560486. https://doi.org/10.1101/2023.10.02.560486.
Xiong Q, Cao L, Ma C, Tortorici MA, Liu C, Si J, Liu P, Gu M, Walls AC, Wang C, et al. Close relatives of MERS-CoV in bats use ACE2 as their functional receptors. Nature. 2022;612:748–57. https://doi.org/10.1038/s41586-022-05513-3.
Google Scholar
Ma C, Liu C, Xiong Q, Gu M, Shi L, Wang C, Si J, Tong F, Liu P, Huang M, et al. Broad host tropism of ACE2-using MERS-related coronaviruses and determinants restricting viral recognition. Cell Discov. 2023;9:57. https://doi.org/10.1038/s41421-023-00566-8.
Google Scholar
Park Y-J, Liu C, Lee J, Brown JT, Ma C-B, Liu P, Gen R, Xiong Q, Zepeda SK, Stewart C, et al. Molecular basis of convergent evolution of ACE2 receptor utilization among HKU5 coronaviruses. Cell. 2025. https://doi.org/10.1016/j.cell.2024.12.032.
Google Scholar
Chen J, Zhang W, Li Y, Liu C, Dong T, Chen H, Wu C, Su J, Li B, Zhang W, et al. Bat-infecting merbecovirus HKU5-CoV lineage 2 can use human ACE2 as a cell entry receptor. Cell. 2025. https://doi.org/10.1016/j.cell.2025.01.042.
Google Scholar
Catanzaro NJ, Wu Z, Fan C, Schäfer A, Yount BL, Bjorkman PJ, Baric R, Letko M. ACE2 from Pipistrellus Abramus bats is a receptor for HKU5 coronaviruses. bioRxiv. 2024. https://doi.org/10.1101/2024.03.13.584892.
Raj VS, Mou H, Smits SL, Dekkers DHW, Müller MA, Dijkman R, Muth D, Demmers JAA, Zaki A, Fouchier RAM, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495:251–4. https://doi.org/10.1038/nature12005.
Google Scholar
Xia L-Y, Wang Z-F, Cui X-M, Li Y-G, Ye R-Z, Zhu D-Y, Li F-X, Zhang J, Wang W-H, Zhang M-Z, et al. Isolation and characterization of a pangolin-borne HKU4-related coronavirus that potentially infects human-DPP4-transgenic mice. Nat Commun. 2024;15:1048. https://doi.org/10.1038/s41467-024-45453-2.
Google Scholar
Tse LV, Hou YJ, McFadden E, Lee RE, Scobey TD, Leist SR, Martinez DR, Meganck RM, Schäfer A, Yount BL, et al. A MERS-CoV antibody neutralizes a pre-emerging group 2c bat coronavirus. Sci Transl Med. 2023;15: eadg5567. https://doi.org/10.1126/scitranslmed.adg5567.
Google Scholar
Liu C, Park Y-J, Ma C-B, Stuart C, Gen R, Sun Y-C, Yang X, Lin M-Y, Xiong Q, Si J-Y, et al. ACE2 Utilization of HKU25 Clade MERS-related coronaviruses with broad geographic distribution. bioRxiv. 2025. https://doi.org/10.1101/2025.02.19.639017.
Ma C-B, Liu C, Park Y-J, Tang J, Chen J, Xiong Q, Lee J, Stewart C, Asarnow D, Brown J, et al. Multiple independent acquisitions of ACE2 usage in MERS-related coronaviruses. Cell. 2025. https://doi.org/10.1016/j.cell.2024.12.031.
Google Scholar
Lazov CM, Belsham GJ, Bøtner A, Rasmussen TB. Full-genome sequences of alphacoronaviruses and astroviruses from myotis and pipistrelle bats in Denmark. Viruses. 2021;13:1073. https://doi.org/10.3390/v13061073.
Google Scholar
Lazov CM, Chriél M, Baagøe H, Fjederholt E, Deng Y, Kooi E, Belsham G, Bøtner A, Rasmussen TB. Detection and characterization of distinct Alphacoronaviruses in five different bat species in Denmark. Viruses. 2018;10(9): 486. https://doi.org/10.3390/v10090486.
Google Scholar
Escutenaire S, Mohamed N, Isaksson M, Thorén P, Klingeborn B, Belák S, Berg M, Blomberg J. SYBR green real-time reverse transcription-polymerase chain reaction assay for the generic detection of coronaviruses. Arch Virol. 2007;152:41–58. https://doi.org/10.1007/s00705-006-0840-x.
Google Scholar
Vijgen L, Moës E, Keyaerts E, Li S, Van Ranst M. A pancoronavirus RT-PCR assay for detection of all known coronaviruses. In; Cavanagh, D., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, 2008; Vol. 454, pp. 3–12 ISBN 978–1–58829–867–6, https://doi.org/10.1007/978-1-59745-181-9_1.
Erlandsson L, Rosenstierne MW, McLoughlin K, Jaing C, Fomsgaard A. The microbial detection array combined with random Phi29-amplification used as a diagnostic tool for virus detection in clinical samples. PLoS One. 2011;6:e22631. https://doi.org/10.1371/journal.pone.0022631.
Google Scholar
Rosenstierne MW, McLoughlin KS, Olesen ML, Papa A, Gardner SN, Engler O, Plumet S, Mirazimi A, Weidmann M, Niedrig M, et al. The microbial detection array for detection of emerging viruses in clinical samples – a useful panmicrobial diagnostic tool. PLoS One. 2014;9:e100813. https://doi.org/10.1371/journal.pone.0100813.
Google Scholar
Krueger F, James F, Ewels P, Afyounian E, Weinstein M, Schuster-Boeckler B, Hulselmans G. sclamons FelixKrueger/TrimGalore: V0.6.10 – add default decompression path. 2023. https://doi.org/10.5281/zenodo.7598955
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17:10. https://doi.org/10.14806/ej.17.1.200.
Google Scholar
Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257. https://doi.org/10.1186/s13059-019-1891-0.
Google Scholar
Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using diamond. Nat Methods. 2021;18:366–8. https://doi.org/10.1038/s41592-021-01101-x.
Google Scholar
Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de bruijn graph. Bioinformatics. 2015;31:1674–6. https://doi.org/10.1093/bioinformatics/btv033.
Google Scholar
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. Metaspades: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34. https://doi.org/10.1101/gr.213959.116.
Google Scholar
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100. https://doi.org/10.1093/bioinformatics/bty191.
Google Scholar
Taxoniq: taxon information query – fast, offline querying of NCBI taxonomy and related data Available online: https://github.com/taxoniq/taxoniq.
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008. https://doi.org/10.1093/gigascience/giab008.
Google Scholar
Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes De Novo Assembler. Curr Protoc Bioinforma. 2020;70:e102. https://doi.org/10.1002/cpbi.102.
Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013. url: http://arxiv.org/abs/1303.3997.
Jones, T.C.; Muehlemann, B.; Gieraths, U. Gb2seq: A Python Library and Command-Line Scripts for Working with GenBank Genome Sequences and Annotations Available online: https://github.com/VirologyCharite/gb2seq.
Tan CCS, Trew J, Peacock TP, Mok KY, Hart C, Lau K, Ni D, Orme CDL, Ransome E, Pearse WD, et al. Genomic screening of 16 UK native bat species through conservationist networks uncovers coronaviruses with zoonotic potential. Nat Commun. 2023;14:3322. https://doi.org/10.1038/s41467-023-38717-w.
Google Scholar
Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016;17:132. https://doi.org/10.1186/s13059-016-0997-x.
Google Scholar
Huddleston J, Hadfield J, Sibley T, Lee J, Fay K, Ilcisin M, Harkins E, Bedford T, Neher R, Hodcroft E. Augur: a bioinformatics toolkit for phylogenetic analyses of human pathogens. J Open Source Softw. 2021;6:2906. https://doi.org/10.21105/joss.02906.
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80. https://doi.org/10.1093/molbev/mst010.
Google Scholar
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFboot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35:518–22. https://doi.org/10.1093/molbev/msx281.
Google Scholar
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21. https://doi.org/10.1093/sysbio/syq010.
Google Scholar
Yu G, Smith DK, Zhu H, Guan Y, Lam TT. GGTREE : an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28–36. https://doi.org/10.1111/2041-210X.12628.
Google Scholar
Bu C, Zheng X, Zhao X, Xu T, Bai X, Jia Y, Chen M, Hao L, Xiao J, Zhang Z, et al. GenBase: a nucleotide sequence database. Genomics Proteomics Bioinf. 2024;22:qzae047. https://doi.org/10.1093/gpbjnl/qzae047.
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. Modelfinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9. https://doi.org/10.1038/nmeth.4285.
Google Scholar
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, et al. SWISS-model: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–303. https://doi.org/10.1093/nar/gky427.
Google Scholar
Meng EC, Goddard TD, Pettersen EF, Couch GS, Pearson ZJ, Morris JH, Ferrin TE. UCSF chimerax: tools for structure building and analysis. Protein Sci. 2023;32: e4792. https://doi.org/10.1002/pro.4792.
Google Scholar
Wang N, Shi X, Jiang L, Zhang S, Wang D, Tong P, Guo D, Fu L, Cui Y, Liu X, et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 2013;23:986–93. https://doi.org/10.1038/cr.2013.92.
Google Scholar
Baagøe, H. Langøret Flagermus. In Dansk Pattedyratlas; Baagøe, H.J., Jensen, T.S., Eds.; Gyldendal, 2007 ISBN 978–87–02–05506–1.
Elmeros, M.; Fjederholt, E.T.; Møller, J.D.; Baagøe, H.J.; Bladt, J.; Kjær, C. Opdatering Af: Håndbog Om Dyrearter På Habitatdirektivets Bilag IV. Del 2 – Odder Og Flagermus.; 2024; ISBN 978–87–7156–869–1.
Bats. In Handbook of the Mammals of the World, vol 9; Wilson, D., Mittermeier, R., Eds.; Lynx Editions, 2019 ISBN 978–84–16728–19–0.
Ancillotto, L.; Russo, D. Brown Long-Eared Bat Plecotus Auritus (Linnaeus, 1758). In Chiroptera. Handbook of the Mammals of Europe; Russo, D., Ed.; Springer Nature Switzerland AG, 2023; pp. 617–634 ISBN 978–3–030–44029–9, https://doi.org/10.1007/978-3-030-44029-9_72.
Dietz C, Von Helversen O, Nill D. Bats of Britain, Europe and Northwest Africa; . A & C Black Publishers Ltd.: London, 2009; ISBN 978–1–4081–0531–3.
Ahlén I, Baagøe HJ, Bach L. Behavior of Scandinavian bats during migration and foraging at sea. J Mammal. 2009;90:1318–23. https://doi.org/10.1644/09-MAMM-S-223R.1.
Google Scholar
Leopardi S, Desiato R, Mazzucato M, Orusa R, Obber F, Averaimo D, Berjaoui S, Canziani S, Capucchio MT, Conti R, et al. One health surveillance strategy for coronaviruses in Italian wildlife. Epidemiol Infect. 2023;151:e96. https://doi.org/10.1017/S095026882300081X.
Google Scholar
Reusken CBEM, Lina PHC, Pielaat A, de Vries A, Dam-Deisz C, Adema J, Drexler JF, Drosten C, Kooi EA. Circulation of group 2 coronaviruses in a bat species common to urban areas in western Europe. Vector-Borne and Zoonotic Diseases. 2010;10:785–91. https://doi.org/10.1089/vbz.2009.0173.
Google Scholar
De Benedictis P, Marciano S, Scaravelli D, Priori P, Zecchin B, Capua I, Monne I, Cattoli G. Alpha and lineage C betacov infections in Italian bats. Virus Genes. 2014;48:366–71. https://doi.org/10.1007/s11262-013-1008-x.
Google Scholar
Denton JF, Lugo-Martinez J, Tucker AE, Schrider DR, Warren WC, Hahn MW. Extensive error in the number of genes inferred from draft genome assemblies. PLoS Comput Biol. 2014;10:e1003998. https://doi.org/10.1371/journal.pcbi.1003998.
Google Scholar
Liao X, Li M, Zou Y, Wu F, Yi‐Pan, Wang J. Current challenges and solutions of de Novo assembly. Quant Biol. 2019;7:90–109. https://doi.org/10.1007/s40484-019-0166-9.
Rodrigue S, Malmstrom RR, Berlin AM, Birren BW, Henn MR, Chisholm SW. Whole genome amplification and de novo assembly of single bacterial cells. PLoS One. 2009;4:e6864. https://doi.org/10.1371/journal.pone.0006864.
Google Scholar
Lunter G, Goodson M. Stampy: a statistical algorithm for sensitive and fast mapping of illumina sequence reads. Genome Res. 2011;21:936–9. https://doi.org/10.1101/gr.111120.110.
Google Scholar
Brandt DYC, Aguiar VRC, Bitarello BD, Nunes K, Goudet J, Meyer D. Mapping bias overestimates reference allele frequencies at the HLA genes in the 1000 genomes project phase I data. G3 Genes|Genomes|Genetics. 2015;5:931–41. https://doi.org/10.1534/g3.114.015784.
Google Scholar
Memish ZA, Cotten M, Meyer B, Watson SJ, Alsahafi AJ, Al Rabeeah AA, Corman VM, Sieberg A, Makhdoom HQ, Assiri A, et al. Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013. Emerg Infect Dis. 2014;20:1012–5. https://doi.org/10.3201/eid2006.140402.
Google Scholar
Tolentino JE, Lytras S, Ito J, Sato K. Recombination analysis on the receptor switching event of MERS-CoV and its close relatives: implications for the emergence of MERS-CoV. Virol J. 2024;21:84. https://doi.org/10.1186/s12985-024-02358-2.
Google Scholar
Patiño-Galindo JÁ, Filip I, Rabadan R. Global patterns of recombination across human viruses. Mol Biol Evol. 2021;38:2520–31. https://doi.org/10.1093/molbev/msab046.
Google Scholar
Forni D, Cagliani R, Sironi M. Recombination and positive selection differentially shaped the diversity of betacoronavirus subgenera. Viruses. 2020;12:1313. https://doi.org/10.3390/v12111313.
Google Scholar
Wells HL, Bonavita CM, Navarrete-Macias I, Vilchez B, Rasmussen AL, Anthony SJ. The coronavirus recombination pathway. Cell Host Microbe. 2023;31:874–89. https://doi.org/10.1016/j.chom.2023.05.003.
Google Scholar