Subaqueous evidence of the last glacial maximum and its termination in southern Patagonia

  • Denton, G. H. et al. The last glacial termination. Science 328, 1652–1656 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Denton, G. H., Broecker, W. S. & Alley, R. B. The mystery interval 17.5 to 14.5 kyrs ago. PAGES News 14, 14–16 (2006).

    Google Scholar 

  • Toggweiler, J. Shifting westerlies. Science 323, 1434–1435 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Denton, G. H. et al. Geomorphology, stratigraphy, and radiocarbon chronology of LlanquihueDrift in the area of the Southern Lake District, Seno Reloncaví, and Isla Grande de Chiloé, Chile. Geog. Ann. Ser. A Phys. Geogr. 81, 167–229 (1999).

    Google Scholar 

  • Pedro, J. et al. The last deglaciation: Timing the bipolar seesaw. Clim. Past 7, 671–683 (2011).

    Google Scholar 

  • Broecker, W. S. Paleocean circulation during the last deglaciation: A bipolar seesaw?. Paleoceanography 13, 119–121 (1998).

    ADS 

    Google Scholar 

  • Anderson, R. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323, 1443–1448 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Denton, G. H. et al. Interhemispheric linkage of paleoclimate during the last glaciation. Geogr. Ann. Ser. A Phys. Geogr. 81, 107–153 (1999).

    Google Scholar 

  • Shakun, J. D. et al. Regional and global forcing of glacier retreat during the last deglaciation. Nat. Commun. 6, 1–7 (2015).

    ADS 

    Google Scholar 

  • Wittmeier, H. E. et al. Late Glacial mountain glacier culmination in Arctic Norway prior to the Younger Dryas. Quat. Sci. Rev. 245, 106461 (2020).

    Google Scholar 

  • Young, N. E., Briner, J. P., Schaefer, J., Zimmerman, S. & Finkel, R. C. Early Younger Dryas glacier culmination in southern Alaska: Implications for North Atlantic climate change during the last deglaciation. Geology 47, 550–554 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Denton, G. H. et al. The Zealandia Switch: Ice age climate shifts viewed from Southern Hemisphere moraines. Quat. Sci. Rev. 257, 106771. https://doi.org/10.1016/j.quascirev.2020.106771 (2021).

    Google Scholar 

  • Glasser, N. F. et al. Cosmogenic nuclide exposure ages for moraines in the Lago San Martin Valley, Argentina. Quat. Res. 75, 636–646 (2011).

    CAS 

    Google Scholar 

  • Davies, B. J. et al. The evolution of the Patagonian Ice Sheet from 35 ka to the present day (PATICE). Earth-Sci. Rev. 204, 103152 (2020).

    Google Scholar 

  • Glasser, N. F. & Jansson, K. N. Fast-flowing outlet glaciers of the last glacial maximum Patagonian Icefield. Quat. Res. 63, 206–211 (2005).

    Google Scholar 

  • Kaplan, M. et al. Southern Patagonian glacial chronology for the Last Glacial period and implications for Southern Ocean climate. Quat. Sci. Rev. 27, 284–294. https://doi.org/10.1016/j.quascirev.2007.09.013 (2008).

    ADS 

    Google Scholar 

  • García, J.-L. et al. The MIS 3 maximum of the Torres del Paine and Última Esperanza ice lobes in Patagonia and the pacing of southern mountain glaciation. Quat. Sci. Rev. 185, 9–26 (2018).

    ADS 

    Google Scholar 

  • Çiner, A. et al. Terrestrial cosmogenic 10Be dating of the Última Esperanza ice lobe moraines (52(^{circ })S, Patagonia) indicates the global Last Glacial Maximum (LGM) extent was half of the local LGM. Geomorphology 414, 108381. https://doi.org/10.1016/j.geomorph.2022.108381 (2022).

    Google Scholar 

  • Rudolph, E. M. et al. Early glacial maximum and deglaciation at sub-Antarctic Marion Island from cosmogenic 36Cl exposure dating. Quat. Sci. Rev. 231, 106208 (2020).

    Google Scholar 

  • Mendelova, M., Hein, A. S., McCulloch, R. & Davies, B. The last glacial maximum and deglaciation in central Patagonia, 44(^{circ }) S-49(^{circ }) S. Cuadernos de Investigación Geográfica 43, 719–750 (2017).

    Google Scholar 

  • Huynh, C., Hein, A. S., McCulloch, R. D. & Bingham, R. G. The last glacial cycle in southernmost Patagonia: A review. Quat. Sci. Rev. 344, 108972 (2024).

    Google Scholar 

  • Hein, A. S. et al. Middle Pleistocene glaciation in Patagonia dated by cosmogenic-nuclide measurements on outwash gravels. Earth Planet. Sci. Lett. 286, 184–197 (2009).

    ADS 
    CAS 

    Google Scholar 

  • Hein, A. S. et al. The chronology of the Last Glacial Maximum and deglacial events in central Argentine Patagonia. Quat. Sci. Rev. 29, 1212–1227 (2010).

    ADS 

    Google Scholar 

  • Murray, D. S. et al. Northern Hemisphere forcing of the last deglaciation in southern Patagonia. Geology 40, 631–634 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Soteres, R. L. et al. Glacier fluctuations in the northern Patagonian Andes (44(^{circ })S) imply wind-modulated interhemispheric in-phase climate shifts during Termination 1. Sci. Rep. 12, 10842. https://doi.org/10.1038/s41598-022-14921-4 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leger, T. P. et al. Geomorphology and 10Be chronology of the Last Glacial Maximum and deglaciation in northeastern Patagonia, 43(^{circ })S-71(^{circ })W. Quat. Sci. Rev. 272, 107194 (2021).

    Google Scholar 

  • Strelin, J. A., Denton, G., Vandergoes, M., Ninnemann, U. & Putnam, A. Radiocarbon chronology of the late-glacial Puerto Bandera moraines, Southern Patagonian Icefield, Argentina. Quat. Sci. Rev. 30, 2551–2569 (2011).

    ADS 

    Google Scholar 

  • Ackert, R. P. et al. Patagonian glacier response during the Late Glacial-Holocene transition. Science 321, 392–395 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Romero, M. et al. Late Quaternary glacial maxima in southern Patagonia: Insights from the Lago Argentino glacier lobe. Clim. Past 20, 1861–1883 (2024).

    Google Scholar 

  • Kirkbride, M. & Winkler, S. Correlation of Late Quaternary moraines: Impact of climate variability, glacier response, and chronological resolution. Quat. Sci. Rev. 46, 1–29 (2012).

    ADS 

    Google Scholar 

  • Barr, I. D. & Lovell, H. A review of topographic controls on moraine distribution. Geomorphology 226, 44–64 (2014).

    ADS 

    Google Scholar 

  • Gibbons, A. B., Megeath, J. D. & Pierce, K. L. Probability of moraine survival in a succession of glacial advances. Geology 12, 327–330 (1984).

    ADS 

    Google Scholar 

  • Ballantyne, C. K. & Benn, D. I. Paraglacial slope adjustment and resedimentation following Rrcent glacier retreat, Fåbergstølsdalen, Norway. Arct. Alp. Res. 26, 255–269 (1994).

    Google Scholar 

  • Curry, A., Cleasby, V. & Zukowskyj, P. Paraglacial response of steep, sediment-mantled slopes to post-‘Little Ice Age’glacier recession in the central Swiss Alps. J. Quat. Sci. Publ. Quat. Res. Assoc. 21, 211–225 (2006).

    Google Scholar 

  • Darvill, C. M., Stokes, C. R., Bentley, M. J. & Lovell, H. A glacial geomorphological map of the southernmost ice lobes of Patagonia: The Bahía Inútil-San Sebastián, Magellan, Otway, Skyring and Río Gallegos lobes. J. Maps 10, 500–520 (2014).

    Google Scholar 

  • Owen, L. A. Mass movement deposits in the Karakoram Mountains: Their sedimentary characteristics, recognition and role in Karakoram landform evolution. Zeitschrift für Geomorphologie 35, 401–424 (1991).

    ADS 

    Google Scholar 

  • Kaplan, M. R. et al. In-situ cosmogenic 10Be production rate at Lago Argentino, Patagonia: Implications for late-glacial climate chronology. Earth Planet. Sci. Lett. 309, 21–32 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Hicks, D. M., McSaveney, M. & Chinn, T. Sedimentation in proglacial Ivory Lake, Southern Alps, New Zealand. Arct. Alp. Res. 22, 26–42 (1990).

    Google Scholar 

  • Eyles, N., Mullins, H. T. & Hine, A. C. The seismic stratigraphy of Okanagan Lake, British Columbia; a record of rapid deglaciation in a deep ‘fiord-lake’ basin. Sediment. Geol. 73, 13–41 (1991).

    ADS 

    Google Scholar 

  • Van Rensbergen, P., De Batist, M., Beck, C. & Manalt, F. High-resolution seismic stratigraphy of late Quaternary fill of Lake Annecy (northwestern Alps): Evolution from glacial to interglacial sedimentary processes. Sediment. Geol. 117, 71–96 (1998).

    ADS 

    Google Scholar 

  • Van Rensbergen, P., De Batist, M., Beck, C. & Chapron, E. High-resolution seismic stratigraphy of glacial to interglacial fill of a deep glacigenic lake: Lake Le Bourget, Northwestern Alps, France. Sediment. Geol. 128, 99–129 (1999).

    ADS 

    Google Scholar 

  • Waldmann, N., Ariztegui, D., Anselmetti, F. S., Coronato, A. & Austin, J. A. Jr. Geophysical evidence of multiple glacier advances in Lago Fagnano (54 S), southernmost Patagonia. Quat. Sci. Rev. 29, 1188–1200 (2010).

    ADS 

    Google Scholar 

  • Waldmann, N. et al. Holocene climatic fluctuations and positioning of the Southern Hemisphere westerlies in Tierra del Fuego (54 S), Patagonia. J. Quat. Sci. 25, 1063–1075 (2010).

    Google Scholar 

  • Lozano, J. G., Bran, D. M., Lodolo, E., Tassone, A. & Vilas, J. F. Holocene seismic stratigraphy of the southern arms of Lago Argentino. J. S. Am. Earth Sci. 111, 103495 (2021).

    Google Scholar 

  • Powell, R. D. & Cooper, J. M. A glacial sequence stratigraphic model for temperate, glaciated continental shelves. Geol. Soc. Lond. Spec. Publ. 203, 215–244 (2002).

    ADS 

    Google Scholar 

  • Montelli, A. et al. Late Quaternary glacial dynamics and sedimentation variability in the Bering Trough, Gulf of Alaska. Geology 45, 251–254 (2017).

    ADS 

    Google Scholar 

  • Hogan, K. A. et al. Glacial sedimentation, fluxes and erosion rates associated with ice retreat in petermann fjord and nares strait, north-west greenland. The Cryosphere 14, 261–286 (2020).

    ADS 

    Google Scholar 

  • Bennett, M. R. The morphology, structural evolution and significance of push moraines. Earth-Sci. Rev. 53, 197–236 (2001).

    ADS 

    Google Scholar 

  • Vaughan-Hirsch, D. P. & Phillips, E. R. Mid-Pleistocene thin-skinned glaciotectonic thrusting of the Aberdeen Ground Formation, Central Graben region, central North Sea. J. Quat. Sci. 32, 196–212 (2017).

    Google Scholar 

  • Benn, D. & Evans, D. J. Glaciers and Glaciation (Routledge, 2010).

  • Kaplan, M. R. et al. Patagonian and southern South Atlantic view of Holocene climate. Quat. Sci. Rev. 141, 112–125 (2016).

    ADS 

    Google Scholar 

  • Strelin, J. A. & Malagnino, E. C. Glaciaciones pleistocenas del Lago Argentino y alto valle del Río Santa Cruz. In XIII Congreso Geológico Argentino, vol. 4, 311–325 (1996).

  • Lønne, I. & Syvitski, J. Effects of the readvance of an ice margin on the seismic character of the underlying sediment. Mar. Geol. 143, 81–102 (1997).

    ADS 

    Google Scholar 

  • Lønne, I. & Nemec, W. The kinematics of ancient tidewater ice margins: Criteria for recognition from grounding-line moraines. Geol. Soc. Lond. Spec. Publ. 354, 57–75. https://doi.org/10.1144/SP354.4 (2011).

    ADS 

    Google Scholar 

  • López-Martínez, J., Rivera, J., Dowdeswell, J. & Acosta, J. Giant ploughmarks on the South Patagonian continental margin produced by Antarctic icebergs. Geol. Soc. Lond. Mem. 46, 273–274 (2016).

    Google Scholar 

  • Pedersen, S. A. S. Superimposed deformation in glaciotectonics. Bull. Geol. Soc. Den. 46, 125–144 (2000).

    Google Scholar 

  • Boulton, G. et al. Till and moraine emplacement in a deforming bed surge–an example from a marine environment.. In Developments in Quaternary Sciences, vol. 4, 122–148 (Elsevier, 2004).

  • Boex, J. et al. Rapid thinning of the late Pleistocene Patagonian Ice Sheet followed migration of the Southern Westerlies. Sci. Rep. 3, 2118 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moreno, P. I. et al. Radiocarbon chronology of the last glacial maximum and its termination in northwestern Patagonia. Quat. Sci. Rev. 122, 233–249 (2015).

    ADS 

    Google Scholar 

  • Strelin, J. A. & Malagnino, E. C. Late-glacial history of Lago Argentino, Argentina, and age of the Puerto Bandera moraines. Quat. Res. 54, 339–347 (2000).

    CAS 

    Google Scholar 

  • Minowa, M., Schaefer, M. & Skvarca, P. Effects of topography on dynamics and mass loss of lake-terminating glaciers in southern patagonia. J. Glaciol. 1–18 (2023).

  • Denton, G. H., Toucanne, S., Putnam, A. E., Barrell, D. J. & Russell, J. L. Heinrich summers. Quat. Sci. Rev. 295, 107750 (2022).

    Google Scholar 

  • Fedotova, A. & Magnani, M. Glacial erosion rates since the last glacial maximum for the former argentino glacier and present-day upsala glacier, patagonia. J. Geophys. Res. Earth Surf. 129, e2024JF007960 (2024).

    Google Scholar 

  • Cowan, E. A. et al. Fjords as temporary sediment traps: history of glacial erosion and deposition in Muir Inlet, Glacier Bay National Park, southeastern Alaska. Bulletin 122, 1067–1080 (2010).

    Google Scholar 

  • Lozano, J. et al. Depositional setting of the southern arms of Lago Argentino (southern Patagonia). J. Maps 16, 324–334 (2020).

    Google Scholar 

  • Magnani, M. B. Patagonia_GIA. https://doi.org/10.7914/qwde-1m47 (2019).

  • NASA & JPL. NASA Shuttle Radar Topography Mission Global 3 arc second. Distributed by OpenTopography. Accessed: 2024-05-09 from https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL3.003 (2013).

  • Farr, T. G. & Kobrick, M. Shuttle Radar Topography Mission produces a wealth of data. Eos Trans. Am. Geophys. Union 81, 583–585 (2000).

    ADS 

    Google Scholar 

  • Continue Reading