Denton, G. H. et al. The last glacial termination. Science 328, 1652–1656 (2010).
Google Scholar
Denton, G. H., Broecker, W. S. & Alley, R. B. The mystery interval 17.5 to 14.5 kyrs ago. PAGES News 14, 14–16 (2006).
Toggweiler, J. Shifting westerlies. Science 323, 1434–1435 (2009).
Google Scholar
Denton, G. H. et al. Geomorphology, stratigraphy, and radiocarbon chronology of LlanquihueDrift in the area of the Southern Lake District, Seno Reloncaví, and Isla Grande de Chiloé, Chile. Geog. Ann. Ser. A Phys. Geogr. 81, 167–229 (1999).
Pedro, J. et al. The last deglaciation: Timing the bipolar seesaw. Clim. Past 7, 671–683 (2011).
Broecker, W. S. Paleocean circulation during the last deglaciation: A bipolar seesaw?. Paleoceanography 13, 119–121 (1998).
Google Scholar
Anderson, R. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323, 1443–1448 (2009).
Google Scholar
Denton, G. H. et al. Interhemispheric linkage of paleoclimate during the last glaciation. Geogr. Ann. Ser. A Phys. Geogr. 81, 107–153 (1999).
Shakun, J. D. et al. Regional and global forcing of glacier retreat during the last deglaciation. Nat. Commun. 6, 1–7 (2015).
Google Scholar
Wittmeier, H. E. et al. Late Glacial mountain glacier culmination in Arctic Norway prior to the Younger Dryas. Quat. Sci. Rev. 245, 106461 (2020).
Young, N. E., Briner, J. P., Schaefer, J., Zimmerman, S. & Finkel, R. C. Early Younger Dryas glacier culmination in southern Alaska: Implications for North Atlantic climate change during the last deglaciation. Geology 47, 550–554 (2019).
Google Scholar
Denton, G. H. et al. The Zealandia Switch: Ice age climate shifts viewed from Southern Hemisphere moraines. Quat. Sci. Rev. 257, 106771. https://doi.org/10.1016/j.quascirev.2020.106771 (2021).
Glasser, N. F. et al. Cosmogenic nuclide exposure ages for moraines in the Lago San Martin Valley, Argentina. Quat. Res. 75, 636–646 (2011).
Google Scholar
Davies, B. J. et al. The evolution of the Patagonian Ice Sheet from 35 ka to the present day (PATICE). Earth-Sci. Rev. 204, 103152 (2020).
Glasser, N. F. & Jansson, K. N. Fast-flowing outlet glaciers of the last glacial maximum Patagonian Icefield. Quat. Res. 63, 206–211 (2005).
Kaplan, M. et al. Southern Patagonian glacial chronology for the Last Glacial period and implications for Southern Ocean climate. Quat. Sci. Rev. 27, 284–294. https://doi.org/10.1016/j.quascirev.2007.09.013 (2008).
Google Scholar
García, J.-L. et al. The MIS 3 maximum of the Torres del Paine and Última Esperanza ice lobes in Patagonia and the pacing of southern mountain glaciation. Quat. Sci. Rev. 185, 9–26 (2018).
Google Scholar
Çiner, A. et al. Terrestrial cosmogenic 10Be dating of the Última Esperanza ice lobe moraines (52(^{circ })S, Patagonia) indicates the global Last Glacial Maximum (LGM) extent was half of the local LGM. Geomorphology 414, 108381. https://doi.org/10.1016/j.geomorph.2022.108381 (2022).
Rudolph, E. M. et al. Early glacial maximum and deglaciation at sub-Antarctic Marion Island from cosmogenic 36Cl exposure dating. Quat. Sci. Rev. 231, 106208 (2020).
Mendelova, M., Hein, A. S., McCulloch, R. & Davies, B. The last glacial maximum and deglaciation in central Patagonia, 44(^{circ }) S-49(^{circ }) S. Cuadernos de Investigación Geográfica 43, 719–750 (2017).
Huynh, C., Hein, A. S., McCulloch, R. D. & Bingham, R. G. The last glacial cycle in southernmost Patagonia: A review. Quat. Sci. Rev. 344, 108972 (2024).
Hein, A. S. et al. Middle Pleistocene glaciation in Patagonia dated by cosmogenic-nuclide measurements on outwash gravels. Earth Planet. Sci. Lett. 286, 184–197 (2009).
Google Scholar
Hein, A. S. et al. The chronology of the Last Glacial Maximum and deglacial events in central Argentine Patagonia. Quat. Sci. Rev. 29, 1212–1227 (2010).
Google Scholar
Murray, D. S. et al. Northern Hemisphere forcing of the last deglaciation in southern Patagonia. Geology 40, 631–634 (2012).
Google Scholar
Soteres, R. L. et al. Glacier fluctuations in the northern Patagonian Andes (44(^{circ })S) imply wind-modulated interhemispheric in-phase climate shifts during Termination 1. Sci. Rep. 12, 10842. https://doi.org/10.1038/s41598-022-14921-4 (2022).
Google Scholar
Leger, T. P. et al. Geomorphology and 10Be chronology of the Last Glacial Maximum and deglaciation in northeastern Patagonia, 43(^{circ })S-71(^{circ })W. Quat. Sci. Rev. 272, 107194 (2021).
Strelin, J. A., Denton, G., Vandergoes, M., Ninnemann, U. & Putnam, A. Radiocarbon chronology of the late-glacial Puerto Bandera moraines, Southern Patagonian Icefield, Argentina. Quat. Sci. Rev. 30, 2551–2569 (2011).
Google Scholar
Ackert, R. P. et al. Patagonian glacier response during the Late Glacial-Holocene transition. Science 321, 392–395 (2008).
Google Scholar
Romero, M. et al. Late Quaternary glacial maxima in southern Patagonia: Insights from the Lago Argentino glacier lobe. Clim. Past 20, 1861–1883 (2024).
Kirkbride, M. & Winkler, S. Correlation of Late Quaternary moraines: Impact of climate variability, glacier response, and chronological resolution. Quat. Sci. Rev. 46, 1–29 (2012).
Google Scholar
Barr, I. D. & Lovell, H. A review of topographic controls on moraine distribution. Geomorphology 226, 44–64 (2014).
Google Scholar
Gibbons, A. B., Megeath, J. D. & Pierce, K. L. Probability of moraine survival in a succession of glacial advances. Geology 12, 327–330 (1984).
Google Scholar
Ballantyne, C. K. & Benn, D. I. Paraglacial slope adjustment and resedimentation following Rrcent glacier retreat, Fåbergstølsdalen, Norway. Arct. Alp. Res. 26, 255–269 (1994).
Curry, A., Cleasby, V. & Zukowskyj, P. Paraglacial response of steep, sediment-mantled slopes to post-‘Little Ice Age’glacier recession in the central Swiss Alps. J. Quat. Sci. Publ. Quat. Res. Assoc. 21, 211–225 (2006).
Darvill, C. M., Stokes, C. R., Bentley, M. J. & Lovell, H. A glacial geomorphological map of the southernmost ice lobes of Patagonia: The Bahía Inútil-San Sebastián, Magellan, Otway, Skyring and Río Gallegos lobes. J. Maps 10, 500–520 (2014).
Owen, L. A. Mass movement deposits in the Karakoram Mountains: Their sedimentary characteristics, recognition and role in Karakoram landform evolution. Zeitschrift für Geomorphologie 35, 401–424 (1991).
Google Scholar
Kaplan, M. R. et al. In-situ cosmogenic 10Be production rate at Lago Argentino, Patagonia: Implications for late-glacial climate chronology. Earth Planet. Sci. Lett. 309, 21–32 (2011).
Google Scholar
Hicks, D. M., McSaveney, M. & Chinn, T. Sedimentation in proglacial Ivory Lake, Southern Alps, New Zealand. Arct. Alp. Res. 22, 26–42 (1990).
Eyles, N., Mullins, H. T. & Hine, A. C. The seismic stratigraphy of Okanagan Lake, British Columbia; a record of rapid deglaciation in a deep ‘fiord-lake’ basin. Sediment. Geol. 73, 13–41 (1991).
Google Scholar
Van Rensbergen, P., De Batist, M., Beck, C. & Manalt, F. High-resolution seismic stratigraphy of late Quaternary fill of Lake Annecy (northwestern Alps): Evolution from glacial to interglacial sedimentary processes. Sediment. Geol. 117, 71–96 (1998).
Google Scholar
Van Rensbergen, P., De Batist, M., Beck, C. & Chapron, E. High-resolution seismic stratigraphy of glacial to interglacial fill of a deep glacigenic lake: Lake Le Bourget, Northwestern Alps, France. Sediment. Geol. 128, 99–129 (1999).
Google Scholar
Waldmann, N., Ariztegui, D., Anselmetti, F. S., Coronato, A. & Austin, J. A. Jr. Geophysical evidence of multiple glacier advances in Lago Fagnano (54 S), southernmost Patagonia. Quat. Sci. Rev. 29, 1188–1200 (2010).
Google Scholar
Waldmann, N. et al. Holocene climatic fluctuations and positioning of the Southern Hemisphere westerlies in Tierra del Fuego (54 S), Patagonia. J. Quat. Sci. 25, 1063–1075 (2010).
Lozano, J. G., Bran, D. M., Lodolo, E., Tassone, A. & Vilas, J. F. Holocene seismic stratigraphy of the southern arms of Lago Argentino. J. S. Am. Earth Sci. 111, 103495 (2021).
Powell, R. D. & Cooper, J. M. A glacial sequence stratigraphic model for temperate, glaciated continental shelves. Geol. Soc. Lond. Spec. Publ. 203, 215–244 (2002).
Google Scholar
Montelli, A. et al. Late Quaternary glacial dynamics and sedimentation variability in the Bering Trough, Gulf of Alaska. Geology 45, 251–254 (2017).
Google Scholar
Hogan, K. A. et al. Glacial sedimentation, fluxes and erosion rates associated with ice retreat in petermann fjord and nares strait, north-west greenland. The Cryosphere 14, 261–286 (2020).
Google Scholar
Bennett, M. R. The morphology, structural evolution and significance of push moraines. Earth-Sci. Rev. 53, 197–236 (2001).
Google Scholar
Vaughan-Hirsch, D. P. & Phillips, E. R. Mid-Pleistocene thin-skinned glaciotectonic thrusting of the Aberdeen Ground Formation, Central Graben region, central North Sea. J. Quat. Sci. 32, 196–212 (2017).
Benn, D. & Evans, D. J. Glaciers and Glaciation (Routledge, 2010).
Kaplan, M. R. et al. Patagonian and southern South Atlantic view of Holocene climate. Quat. Sci. Rev. 141, 112–125 (2016).
Google Scholar
Strelin, J. A. & Malagnino, E. C. Glaciaciones pleistocenas del Lago Argentino y alto valle del Río Santa Cruz. In XIII Congreso Geológico Argentino, vol. 4, 311–325 (1996).
Lønne, I. & Syvitski, J. Effects of the readvance of an ice margin on the seismic character of the underlying sediment. Mar. Geol. 143, 81–102 (1997).
Google Scholar
Lønne, I. & Nemec, W. The kinematics of ancient tidewater ice margins: Criteria for recognition from grounding-line moraines. Geol. Soc. Lond. Spec. Publ. 354, 57–75. https://doi.org/10.1144/SP354.4 (2011).
Google Scholar
López-Martínez, J., Rivera, J., Dowdeswell, J. & Acosta, J. Giant ploughmarks on the South Patagonian continental margin produced by Antarctic icebergs. Geol. Soc. Lond. Mem. 46, 273–274 (2016).
Pedersen, S. A. S. Superimposed deformation in glaciotectonics. Bull. Geol. Soc. Den. 46, 125–144 (2000).
Boulton, G. et al. Till and moraine emplacement in a deforming bed surge–an example from a marine environment.. In Developments in Quaternary Sciences, vol. 4, 122–148 (Elsevier, 2004).
Boex, J. et al. Rapid thinning of the late Pleistocene Patagonian Ice Sheet followed migration of the Southern Westerlies. Sci. Rep. 3, 2118 (2013).
Google Scholar
Moreno, P. I. et al. Radiocarbon chronology of the last glacial maximum and its termination in northwestern Patagonia. Quat. Sci. Rev. 122, 233–249 (2015).
Google Scholar
Strelin, J. A. & Malagnino, E. C. Late-glacial history of Lago Argentino, Argentina, and age of the Puerto Bandera moraines. Quat. Res. 54, 339–347 (2000).
Google Scholar
Minowa, M., Schaefer, M. & Skvarca, P. Effects of topography on dynamics and mass loss of lake-terminating glaciers in southern patagonia. J. Glaciol. 1–18 (2023).
Denton, G. H., Toucanne, S., Putnam, A. E., Barrell, D. J. & Russell, J. L. Heinrich summers. Quat. Sci. Rev. 295, 107750 (2022).
Fedotova, A. & Magnani, M. Glacial erosion rates since the last glacial maximum for the former argentino glacier and present-day upsala glacier, patagonia. J. Geophys. Res. Earth Surf. 129, e2024JF007960 (2024).
Cowan, E. A. et al. Fjords as temporary sediment traps: history of glacial erosion and deposition in Muir Inlet, Glacier Bay National Park, southeastern Alaska. Bulletin 122, 1067–1080 (2010).
Lozano, J. et al. Depositional setting of the southern arms of Lago Argentino (southern Patagonia). J. Maps 16, 324–334 (2020).
Magnani, M. B. Patagonia_GIA. https://doi.org/10.7914/qwde-1m47 (2019).
NASA & JPL. NASA Shuttle Radar Topography Mission Global 3 arc second. Distributed by OpenTopography. Accessed: 2024-05-09 from https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL3.003 (2013).
Farr, T. G. & Kobrick, M. Shuttle Radar Topography Mission produces a wealth of data. Eos Trans. Am. Geophys. Union 81, 583–585 (2000).
Google Scholar