A new fossil plesiomorphic flat bug (Aradidae) suggests widespread flower visiting in Heteroptera during the Mesozoic

  • Benton, M. J., Wilf, P. & Sauquet, H. The angiosperm terrestrial revolution and the origins of modern biodiversity. New. Phytol. 233, 2017–2035 (2022).

    PubMed 

    Google Scholar 

  • Peris, D. & Condamine, F. L. The angiosperm radiation played a dual role in the diversification of insects and insect pollinators. Nat. Commun. 15, 552 (2024).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peris, D. et al. Evolutionary implications of a deep-time perspective on insect pollination. Biol. Rev. https://doi.org/10.1111/brv.70008 (2025). [online early view].

    Article 
    PubMed 

    Google Scholar 

  • Peña-Kairath, C. et al. Insect pollination in deep time. Trends Ecol. Evol. 38, 749–759 (2023).

    PubMed 

    Google Scholar 

  • Etl, F. et al. Evidence for the recruitment of florivorous plant Bugs as pollinators. Curr. Biol. 32, 4688–4698 (2022).

    PubMed 

    Google Scholar 

  • Fischer, E. & Leal, I. Effect of nectar secretion rate on pollination success of passiflora coccinea (Passifloraceae) in the central Amazon. Braz J. Biol. 66, 747–754 (2006).

    PubMed 

    Google Scholar 

  • Panizzi, A. & Lucini, T. What happened to Nezara viridula (L.) in the americas?? Possible reasons to explain populations decline. Neotrop. Entomol. 45, 619–628 (2016).

    PubMed 

    Google Scholar 

  • Phillips, E., Allan, S. & Gillett-Kaufman, J. Survey of Florida Olive groves during Olive fruit development: monitoring for stink Bugs and Olive fruit flies. Fla. Entomol. 104, 265–273 (2021).

    Google Scholar 

  • Garcia, L., Gould, J. & Eubanks, M. Bugs carry pollen too: pollination efficiency of plant bug Pseudatomoscelis seriatus (Hemiptera: Miridae) visiting cotton flowers. Fla. Entomol. 106, 122–128 (2023).

    Google Scholar 

  • Oelschlägel, B. et al. The betrayed thief–the extraordinary strategy of Aristolochia rotunda to deceive its pollinators. New. Phytol. 206, 342–351 (2015).

    PubMed 

    Google Scholar 

  • Tosaki, Y., Renner, S. & Takahashi, H. Pollination of Sarcandra glabra (Chloranthaceae) in natural populations in Japan. J. Plant. Res. 114, 423–427 (2001).

    Google Scholar 

  • Oliveira, J., Oliveira, M., Guedes, R. & Soares, M. Morphology and preliminary enzyme characterization of the salivary glands from the predatory bug Podisus Nigrispinus (Heteroptera: Pentatomidae). Bull. Entomol. Res. 96, 251–258. https://doi.org/10.1079/ber2005420 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Torres, J., Barros, E., Coelho, R. & Pimentel, R. Zoophytophagous pentatomids feeding on plants and implications for biological control. Arthropod Plant. Interact. 4, 219–227 (2010).

    Google Scholar 

  • Dumont, F., Lucas, É. & Réale, D. Coexistence of zoophytophagous and phytozoophagous strategies linked to genotypic diet specialization in plant bug. PloS One. 12, e0176369 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schuh, R. T. & Weirauch, C. True Bugs of the World (Hemiptera: Heteroptera). Classification and Natural History (Second Edition) (Siri Scientific Press, 2020).

  • Yao, Y., Ren, D., Rider, D. & Cai, W. Phylogeny of the infraorder pentatomomorpha based on fossil and extant morphology, with description of a new fossil family from China. PloS One. 7, e37289 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weirauch, C., Schuh, R. T., Cassis, G. & Wheeler, W. C. Revisiting habitat and lifestyle transitions in heteroptera (Insecta: Hemiptera): Insights from a combined morphological and molecular phylogeny. Cladistics 35, 67–105 (2019).

    PubMed 

    Google Scholar 

  • Larivière, M. C. & Larochelle, A. Synopsis of the subfamily prosympiestinae in new Zealand (Heteroptera: Aradidae). Insecta Mundi. 1058, 1–42 (2024).

    Google Scholar 

  • Heiss, E. The Aradidae of Chile (Hemiptera: Heteroptera). Linzer Biol. Beitr. 49, 147–158 (2017).

    Google Scholar 

  • Heiss, E. Archeaneurus neli gen. Et. Sp. Nov. From cretaceous Burmese amber (Heteroptera, Aradidae). Palaeoentomology 2, 566–569 (2019).

    Google Scholar 

  • Cumming, R. & Mlynarek, J. An additional archearadinae flat-bug species from cretaceous Burmese amber (Hemiptera, Aradidae). Zookeys 1219, 123–133 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, D. et al. Wáng, B. A late cretaceous amber biota from central Myanmar. Nat. Comm. 9, 3170 (2018).

    ADS 

    Google Scholar 

  • Heiss, E. A new large-sized flat bug from mid-Cretaceous Burmese amber: Cretozemira Gregori sp. Nov. (Hemiptera, heteroptera, Aradidae). Mesosoic 2, 1–3 (2025).

    Google Scholar 

  • Shi, G. et al. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac. Res. 37, 155–163 (2012).

    Google Scholar 

  • Usinger, R. L. & Matsuda, R. Classification of the Aradidae (Hemiptera-Heteroptera) (British Museum, 1959).

  • Kormilev, N. A. & Froeschner, R. C. Flat Bugs of the world: a synonymic list (Heteroptera: Aradidae). Entomography 5, 1–245 (1987).

    Google Scholar 

  • Westerweel, J. et al. Burma terrane part of the Trans-Tethyan Arc during collision with India according to palaeomagnetic data. Nat. Geosci. 12, 863–868 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wood, H. M. & Wunderlich, J. Burma terrane amber fauna shows connections to Gondwana and transported Gondwanan lineages to the Northern hemisphere (Araneae: Palpimanoidea). Syst. Biol. 72, 1233–1246 (2023).

    PubMed 

    Google Scholar 

  • Doucet, S. M. & Meadows, M. G. Iridescence: a functional perspective. J Roy Soc Interface. 6, 115–132 (2009).

    Google Scholar 

  • Hinkelman, J. et al. Vidlička, Ľ. Neotropical Melyroidea group cockroaches reveal various degrees of (eu)sociality. Sci. Nat. 107, 1–17 (2020).

    Google Scholar 

  • Pires, E. M. et al. First report of jewel Wasp Ampulex compressa (Fabricius, 1781) (Hymenoptera: Ampulicidae) in the Amazon biome of Brazil. Braz J. Biol. 74, 233–234 (2014).

    Google Scholar 

  • Seago, E. A., Brady, P., Vigneron, J-P. & Schultz, T. D. Gold Bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera). J Roy Soc Interface. 6, 165–184 (2008).

    Google Scholar 

  • Malipatil, M. B., Liu, Y. & Cai, W. Revision of Australian Brachysandalus with the description of nine new species including one cavernicolous species (Hemiptera: heteroptera: Reduviidae), and observations on male extragenital structure and leg teratology. Zootaxa 5490, 1–112 (2024).

    PubMed 

    Google Scholar 

  • Weirauch, C. et al. An illustrated identification key to assassin bug subfamilies and tribes (Hemiptera: Reduviidae). Can. J. Arthropod Identif. https://doi.org/10.3752/cjai.2014.26 (2014).

    Article 

    Google Scholar 

  • Castro-Huertas, V., Grazia, J., Forero, D., Fernández, F. & Schwertner, C. F. Stink Bugs (Hemiptera: heteroptera: Pentatomidae) of colombia: an annotated checklist of species. Zootaxa 5097, 1–88 (2022).

    PubMed 

    Google Scholar 

  • Fernandes, J. A. M. & Campos, L. D. A new group of species of Edessa fabricius, 1803 (Hemiptera: heteroptera: Pentatomidae). Zootaxa 3019, 63–68 (2011).

    Google Scholar 

  • Roell, T., Lemaître, V. A. & Webb, M. D. Revision of the African shieldbug genus Afrius stål, 1870 (Hemiptera: heteroptera: pentatomidae: Asopinae). Eur. J. Taxon. 520, 1–44 (2019).

    Google Scholar 

  • Poinar, G. O. & Thomas, D. B. A stink bug, Edessa protera sp. N. (Pentatomidae: Edessinae) in Mexican amber. Hist. Biol. 24, 207–211 (2012).

    Google Scholar 

  • Breed, M. D. & Moore, J. Self-defence in Animal Behaviour, Second Edition (eds: Breed, M. D. & Moore, J.). 325–355 (Academic Press, 2016).

  • Fabricant, S. A., Burdfield-Steel, E. R., Umbers, K., Lowe, E. C. & Herberstein, M. E. Warning signal plasticity in hibiscus harlequin Bugs. Evol. Ecol. 32, 489–507 (2018).

    Google Scholar 

  • Kjernsmo, K. et al. Iridescence as camouflage. Curr. Biol. 30, 551–555 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Szabó, M., Szabó, P., Kóbor, P. & Ősi, A. Alienopterix santonicus sp. n., a metallic cockroach from the late cretaceous Ajkaite amber (Bakony mts, Western Hungary) documents Alienopteridae within the mesozoic Laurasia. Biologia 78, 1701–1712 (2022).

    Google Scholar 

  • Grimaldi, D. A., Peñalver, E., Barrón, E., Herhold, H. W. & Engel, M. S. Direct evidence for eudicot pollen-feeding in a cretaceous stinging Wasp (Angiospermae; hymenoptera, Aculeata) preserved in Burmese amber. Comm. Biol. 2, 408. https://doi.org/10.1038/s42003-019-0652-7 (2019).

    Article 

    Google Scholar 

  • Jákl, S. Description of seven new taxa of cetoniinae from Indonesia (Coleoptera: Scarabaeidae). Acta Entomol. Mus. Natl. Pragae. 51, 535–550 (2011).

    Google Scholar 

  • Jameson, M. L. & Ratcliffe, B. C. Series Scarabaeiformia Crowson 1960 (= Lamellicornia), superfamily Scarabaeoidea Latreille 1802 in American beetles (eds. Thomas, M. C., Skelley, P. E., Frank, J. H. & Arnett, R. H.) Vol. 2, 1–81 (CRC Press, 2002).

  • O’Neill, K. M., Fultz, J. E. & Ivie, M. A. Disribution of adult Cerambycidae and buprestidae (Coleoptera) in a subalpine forest under shelterwood management. Coleopt. Bull. 62, 27–36 (2008).

    Google Scholar 

  • Poinar, G. O. Amber – true or false. Gems Minerals. 534, 80–84 (1982).

    Google Scholar 

  • Scotese, C. R., Vérard, C., Burgener, L., Elling, R. P. & Kocsis, Á. T. Phanerozoic-scope supplementary material to The Cretaceous World: Plate Tectonics, Paleogeography, and Paleoclimate from the PALEOMAP project https://doi.org/10.1144/sp544-2024-28 (2025).

  • Tsai, J. F., Yang, M. M., Rédei, D. & Yeh, G. F. Morphology of the adult in Jewel Bugs of Taiwan (Heteroptera: Scutelleridae) (eds Tsai, J. F., Yang, M. M., Rédei, D. & Yeh, G. F.) 12–43 (National Chung Hsing University, 2011).

  • Continue Reading