In vitro anticancer studies of new derivatives based on the furanocoumarin scaffold

  • World Health Organization. Global cancer burden growing amidst mounting need for services. WHO. (2024). Available from: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing–amidst-mounting-need-for-services

  • American Cancer Society. Cancer Facts & Figs. 2024. ACS. (2024). Available from: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/2024-cancer-facts-figures.html

  • Housman, G. et al. Drug resistance in cancer: an overview. Cancers (Basel). 6 (3), 1769–1792. https://doi.org/10.3390/cancers6031769 (2014). PMID: 25198391; PMCID: PMC4190567.

    Google Scholar 

  • Gottesman, M. M. Mechanisms of Cancer Drug Resistance. Annual Review of Medicine, 53(Volume 53, 2002), 615–627. https://doi.org/https://doi.org/ (2002). https://doi.org/10.1146/annurev.med.53.082901.103929

  • Ward, R. A. et al. Challenges and opportunities in cancer drug resistance. Chem. Rev. 121 (6), 3297–3351. https://doi.org/10.1021/acs.chemrev.0c00383 (2021).

    Google Scholar 

  • Asma, S. T. et al. Natural Products/Bioactive Compounds as a Source of Anticancer Drugs. Cancers https://doi.org/10.3390/cancers14246203 (2022).

    Google Scholar 

  • Khan, M. I. et al. Anticancer properties of medicinal plants and their bioactive compounds against breast cancer: a review on recent investigations. Environ. Sci. Pollut. Res. 29 (17), 24411–24444. https://doi.org/10.1007/s11356-021-17795-7 (2022).

    Google Scholar 

  • Yuan, M. et al. The role of bioactive compounds in natural products extracted from plants in cancer treatment and their mechanisms related to anticancer effects. Oxidative Med. Cell. Longev. 2022 (1), 1429869. https://doi.org/10.1155/2022/1429869 (2022).

    Google Scholar 

  • Aydoğmuş-Öztürk, F., Jahan, H., Beyazit, N., Günaydın, K. & Choudhary, M. I. The anticancer activity of visnagin, isolated from Ammi Visnaga L., against the human malignant melanoma cell lines, HT 144. Mol. Biol. Rep. 46 (2), 1709–1714. https://doi.org/10.1007/s11033-019-04620-1 (2019).

    Google Scholar 

  • Sharma, R. et al. Khellinoflavanone, a semisynthetic derivative of Khellin, overcomes Benzo[a]pyrene toxicity in human normal and cancer cells that express CYP1A1. ACS Omega. 3 (8), 8553–8566. https://doi.org/10.1021/acsomega.8b01088 (2018).

    Google Scholar 

  • Ragab, F. A., Yahya, T. A. A., El-Naa, M. M. & Arafa, R. K. Design, synthesis and structure–activity relationship of novel semi-synthetic flavonoids as antiproliferative agents. Eur. J. Med. Chem. 82, 506–520. https://doi.org/10.1016/j.ejmech.2014.06.007 (2014).

    Google Scholar 

  • Abdelhafez, O. M., Ali, H. I., Amin, K. M., Abdalla, M. M. & Ahmed, E. Y. Design, synthesis and anticancer activity of Furochromone and Benzofuran derivatives targeting VEGFR-2 tyrosine kinase. RSC Adv. 5 (32), 25312–25324. https://doi.org/10.1039/C4RA16228E (2015).

    Google Scholar 

  • Amin, K. M. et al. Synthesis and molecular Docking study of new Benzofuran and furo[3,2-g]chromone-based cytotoxic agents against breast cancer and p38α MAP kinase inhibitors. Bioorg. Chem. 76, 487–500. https://doi.org/10.1016/j.bioorg.2017.12.029 (2018).

    Google Scholar 

  • Abdelhafez, O. M. et al. Design and molecular modeling of novel P38α MAPK inhibitors targeting breast cancer, synthesized from oxygen heterocyclic natural compounds. Bioorg. Med. Chem. 27 (7), 1308–1319. https://doi.org/10.1016/j.bmc.2019.02.027 (2019).

    Google Scholar 

  • Montassier, E. et al. Chemotherapy-driven dysbiosis in the intestinal Microbiome. Aliment. Pharmacol. Ther. 42 (5), 515–528. https://doi.org/10.1111/apt.13302 (2015).

    Google Scholar 

  • Derosa, L. et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann. Oncol. 29 (6), 1437–1444. https://doi.org/10.1093/annonc/mdy103 (2018).

    Google Scholar 

  • Gopalakrishnan, V. et al. Gut Microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 359 (6371), 97–103. https://doi.org/10.1126/science.aan4236 (2018).

    Google Scholar 

  • Kossakowski, J. & Zawadowski, T. SYNTHESIS OF AMINOALKANOL AND AMINOETHYL DERIVATIVES OF 4,9-DIHYDROXY-7-ETHYL-5H-FURO[3,2-g][1]BENZOPYRAN-5-ONE. Pol. J. Chem. 61, 77–83 (1987).

    Google Scholar 

  • Kossakowski, J. & Zawadowski, T. Synthesis of 4-(3-amino-2-hydroxypropoxy)furobenzopyrans. Acta Pol. Pharm. 43 (6), 539–542 (1986).

    Google Scholar 

  • Sazonova, E. V., Chesnokov, M. S., Zhivotovsky, B. & Kopeina, G. S. Drug toxicity assessment: cell proliferation versus cell death. Cell. Death Discovery. 8 (1), 417. https://doi.org/10.1038/s41420-022-01207-x (2022).

    Google Scholar 

  • Decker, T. & Lohmann-Matthes, M. L. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J. Immunol. Methods. 115 (1), 61–69. https://doi.org/10.1016/0022-1759(88)90310-9 (1988).

    Google Scholar 

  • Mustafa, M. et al. Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications. Cells https://doi.org/10.3390/cells13221838 (2024).

    Google Scholar 

  • Huang, G. et al. Synthesis and biological evaluation of sulfur-containing Shikonin oxime derivatives as potential antineoplastic agents. Eur. J. Med. Chem. 143, 166–181. https://doi.org/10.1016/j.ejmech.2017.11.031 (2018).

    Google Scholar 

  • Huang, G. et al. Discovery and synthesis of sulfur-containing 6-substituted 5,8-dimethoxy-1,4-naphthoquinone oxime derivatives as new and potential anti-MDR cancer agents. Eur. J. Med. Chem. 165, 160–171. https://doi.org/10.1016/j.ejmech.2019.01.005 (2019).

    Google Scholar 

  • Cui, J. et al. DMAKO-20 as a new multitarget anticancer prodrug activated by the tumor specific CYP1B1 enzyme. Mol. Pharm. 16 (1), 409–421. https://doi.org/10.1021/acs.molpharmaceut.8b01062 (2019).

    Google Scholar 

  • Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 33 (3), 127–148. https://doi.org/10.1093/intimm/dxaa078 (2021).

    Google Scholar 

  • Ashkenazi, A., Fairbrother, W. J., Leverson, J. D. & Souers, A. J. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat. Rev. Drug Discovery. 16 (4), 273–284. https://doi.org/10.1038/nrd.2016.253 (2017).

    Google Scholar 

  • Levantini, E., Maroni, G., del Re, M. & Tenen, D. G. EGFR signaling pathway as therapeutic target in human cancers. Sem. Cancer Biol. 85, 253–275. https://doi.org/10.1016/j.semcancer.2022.04.002 (2022).

    Google Scholar 

  • Sun, X., Shan, X., Zunhua, Y., Pengwu, Z., Zhu, W. & and Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors for the treatment of non-small cell lung cancer: a patent review (2014-present). Expert Opin. Ther. Pat. 31 (3), 223–238. https://doi.org/10.1080/13543776.2021.1860210 (2021).

    Google Scholar 

  • Birkinshaw, R. W. et al. Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations. Nat. Commun. 10 (1), 2385. https://doi.org/10.1038/s41467-019-10363-1 (2019).

    Google Scholar 

  • Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435 (7042), 677–681. https://doi.org/10.1038/nature03579 (2005).

    Google Scholar 

  • Lee, E. F. et al. Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family. Cell. Death Differ. 14 (9), 1711–1713. https://doi.org/10.1038/sj.cdd.4402178 (2007).

    Google Scholar 

  • Hargreaves, D. et al. Design of rigid protein–protein interaction inhibitors enables targeting of undruggable Mcl-1. Proceedings of the National Academy of Sciences, 120(21), e2221967120. (2023). https://doi.org/10.1073/pnas.2221967120

  • Stamos, J., Sliwkowski, M. X. & Eigenbrot, C. Epidermal growth factor receptor tyrosine kinase domain with 4-anilinoquinazoline inhibitor erlotinib (2002). https://doi.org/10.2210/pdb1M17/pdb

  • Yun, C. H. et al. Crystal structure of EGFR kinase domain G719S mutation in complex with Iressa (2006). https://doi.org/10.2210/pdb2ITO/pdb

  • Gajiwala, K. S. et al. Crystal structure of the wild-type EGFR kinase domain in complex with Dacomitinib (soaked) (2012). https://doi.org/10.2210/pdb4I23/pdb

  • Yun, C. H. & Eck, M. J. EGFR L858R in complex with PD168393 (2013). https://doi.org/10.2210/pdb4LQM/pdb

  • Hargreaves, D., Studies, Reversible & EGFR C797S Triple Mutant Inhibitor Series. Towards a (2020). https://doi.org/10.2210/pdb7AEM/pdb

  • Kitchen, D. B., Decornez, H., Furr, J. R. & Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discovery. 3 (11), 935–949. https://doi.org/10.1038/nrd1549 (2004).

    Google Scholar 

  • Ting, N. L., Lau, H. C. & Yu, J. Cancer pharmacomicrobiomics: targeting microbiota to optimise cancer therapy outcomes. Gut 71 (7), 1412–1425. https://doi.org/10.1136/gutjnl-2021-326264 (2022).

    Google Scholar 

  • Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res., 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235 (2000).

  • Eastman, P. et al. OpenMM 4: A reusable, extensible, hardware independent library for high performance molecular simulation. J. Chem. Theory Comput. 9 (1), 461–469. https://doi.org/10.1021/ct300857j (2013).

    Google Scholar 

  • Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated Docking with selective receptor flexibility. J. Comput. Chem. 30 (16), 2785–2791. https://doi.org/10.1002/jcc.21256 (2009).

    Google Scholar 

  • O’Boyle, N. M. et al. Open babel: an open chemical toolbox. J. Cheminform. 3, 33. https://doi.org/10.1186/1758-2946-3-33 (2011).

    Google Scholar 

  • Trott, O. & Olson, A. J. AutoDock vina: improving the speed and accuracy of Docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31 (2), 455–461. https://doi.org/10.1002/jcc.21334 (2010).

    Google Scholar 

  • Koes, D. R., Baumgartner, M. P. & Camacho, C. J. Lessons learned in empirical scoring with Smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model. 53 (8), 1893–1904. https://doi.org/10.1021/ci300604z (2013).

    Google Scholar 

  • Pagadala, N. S. et al. Software for molecular docking: a review. Biophys. Rev. 9 (2), 91–102. https://doi.org/10.1007/s12551-016-0247-1 (2017).

    Google Scholar 

  • Salentin, S. et al. PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res. https://doi.org/10.1093/nar/gkv315 (2015).

    Google Scholar 

  • Rego, N. & Koes, D. 3Dmol.js: molecular visualization with WebGL. Bioinformatics 31 (8), 1322–1324. https://doi.org/10.1093/bioinformatics/btu829 (2015).

    Google Scholar 

  • BIOVIA & Systèmes, D. Discovery Studio Visualizer, Version 20.1.0.19295 (Dassault Systèmes, 2020).

  • Szulczyk, D. et al. Design and synthesis of novel 1H-tetrazol-5-amine based potent antimicrobial agents: DNA topoisomerase IV and gyrase affinity evaluation supported by molecular Docking studies. Eur. J. Med. Chem. 156, 631–640. https://doi.org/10.1016/j.ejmech.2018.07.041 (2018).

    Google Scholar 

  • Woods, G. L. et al. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes [Internet]. 2nd edition. Wayne (PA): Clinical and Laboratory Standards Institute; 2011 Mar. (CLSI publication / Clinical and Laboratory Standards Institute, No. 31.5.) Available from: https://www.ncbi.nlm.nih.gov/books/NBK544374/

  • Franzblau, S. G. et al. Rapid, Low-Technology MIC Determination with Clinical Mycobacterium tuberculosis Isolates by Using the Microplate Alamar Blue Assay. J. Clin. Microbiology. 3654, 362–366. https://doi.org/10.1128/JCM.36.2.362-366 (1998).

  • Continue Reading