Nandana, V. & Schrader, J. M. Roles of liquid–liquid phase separation in bacterial RNA metabolism. Curr. Opin. Microbiol. 61, 91–98 (2021).
Google Scholar
Azaldegui, C. A., Vecchiarelli, A. G. & Biteen, J. S. The emergence of phase separation as an organizing principle in bacteria. Biophys. J. 120, 1123–1138 (2021).
Google Scholar
Nandana, V., Al-Husini, N., Vaishnav, A., Dilrangi, K. H. & Schrader, J. M. Caulobacter crescentus RNase E condensation contributes to autoregulation and fitness. Mol. Biol. Cell 35, ar104 (2024).
Google Scholar
Passos, C. et al. BR-bodies facilitate adaptive responses and survival during copper stress in Caulobacter crescentus. Preprint at bioRxiv https://doi.org/10.1101/2025.03.11.642215 (2025).
Al-Husini, N., Tomares, D. T., Bitar, O., Childers, W. S. & Schrader, J. M. α-Proteobacterial RNA degradosomes assemble liquid–liquid phase-separated RNP bodies. Mol. Cell 71, 1027–1039.e14 (2018).
Google Scholar
Al-Husini, N. et al. BR-bodies provide selectively permeable condensates that stimulate mRNA decay and prevent release of decay intermediates. Mol. Cell 78, 670–682.e8 (2020).
Google Scholar
Ortiz-Rodríguez, L. A. et al. Stress changes the bacterial biomolecular condensate material state and shifts function from mRNA decay to storage. Preprint at bioRxiv https://doi.org/10.1101/2024.11.12.623272 (2024).
Guan, J. et al. HP-bodies – ancestral condensates that regulate RNA turnover and protein translation in bacteria. Preprint at bioRxiv https://doi.org/10.1101/2025.02.06.636932 (2025).
Pu, Y. Y. et al. ATP-dependent dynamic protein aggregation regulates bacterial dormancy depth critical for antibiotic tolerance. Mol. Cell 73, 143–156.e4 (2019).
Google Scholar
Jin, X. et al. Membraneless organelles formed by liquid–liquid phase separation increase bacterial fitness. Sci. Adv. 7, eabh2929 (2021).
Google Scholar
Zhou, Y. D., Liao, H. B., Pei, L. S. & Pu, Y. Y. Combatting persister cells: the daunting task in post-antibiotics era. Cell Insight 2, 100104 (2023).
Google Scholar
Mateju, D. et al. Single-molecule imaging reveals translation of mRNAs localized to stress granules. Cell 183, 1801–1812.e13 (2020).
Google Scholar
Chen, X. J. et al. Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. Nat. Biotechnol. 37, 1287–1293 (2019).
Google Scholar
Wilmaerts, D. et al. The persistence-inducing toxin HokB forms dynamic pores that cause ATP leakage. Mbio 9, e00744-18 (2018).
Google Scholar
Khong, A. et al. The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Mol. Cell 68, 808–820.e5 (2017).
Google Scholar
Schaefer, C., Michels, J. J. & van der Schoot, P. Structuring of thin-film polymer mixtures upon solvent evaporation. Macromolecules 49, 6858–6870 (2016).
Google Scholar
Plank, M., Wadhams, G. H. & Leake, M. C. Millisecond timescale slimfield imaging and automated quantification of single fluorescent protein molecules for use in probing complex biological processes. Integr. Biol. 1, 602–612 (2009).
Google Scholar
Hui, M. P., Foley, P. L. & Belasco, J. G. Messenger RNA degradation in bacterial cells. Annu. Rev. Genet. 48, 537–559 (2014).
Google Scholar
Cheng, Z. F. & Deutscher, M. P. Purification and characterization of the Escherichia coli exoribonuclease RNase R. Comparison with RNase II. J. Biol. Chem. 277, 21624–21629 (2002).
Google Scholar
Kroschwald, S., Maharana, S. & Simon, A. Hexanediol: a chemical probe to investigate the material properties of membrane-less compartments. Matters 3, e201702000010 (2017).
Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).
Google Scholar
Nandana, V. et al. The BR-body proteome contains a complex network of protein–protein and protein–RNA interactions. Cell Rep. 42, 113229 (2023).
Google Scholar
Giacalone, M. J. et al. Toxic protein expression in Escherichia coli using a rhamnose-based tightly regulated and tunable promoter system. Biotechniques 40, 355–364 (2006).
Google Scholar
Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).
Google Scholar
Datta, S., Costantino, N. & Court, D. L. A set of recombineering plasmids for gram-negative bacteria. Gene 379, 109–115 (2006).
Google Scholar
Moon, S. L. et al. Multicolour single-molecule tracking of mRNA interactions with RNP granules. Nat. Cell Biol. 21, 162–168 (2019).
Google Scholar
Pu, Y. et al. Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Mol. Cell 62, 284–294 (2016).
Google Scholar
Wollman, A. J. M. & Leake, M. C. Millisecond single-molecule localization microscopy combined with convolution analysis and automated image segmentation to determine protein concentrations in complexly structured, functional cells, one cell at a time. Faraday Discuss. 184, 401–424 (2015).
Google Scholar
Reyes-Lamothe, R., Sherratt, D. J. & Leake, M. C. Stoichiometry and architecture of active DNA replication machinery. Science 328, 498–501 (2010).
Google Scholar
Badrinarayanan, A., Reyes-Lamothe, R., Uphoff, S., Leake, M. C. & Sherratt, D. J. In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science 338, 528–531 (2012).
Google Scholar
Syeda, A. H. et al. Single-molecule live cell imaging of Rep reveals the dynamic interplay between an accessory replicative helicase and the replisome. Nucleic Acids Res. 47, 6287–6298 (2019).
Google Scholar
Miller, H., Zhou, Z. K., Wollman, A. J. M. & Leake, M. C. Superresolution imaging of single DNA molecules using stochastic photoblinking of minor groove and intercalating dyes. Methods 88, 81–88 (2015).
Google Scholar
Cosgrove, J. et al. B cell zone reticular cell microenvironments shape CXCL13 gradient formation. Nat. Commun. 11, 3677 (2020).
Google Scholar
Miller, H. et al. High-speed single-molecule tracking of CXCL13 in the B-follicle. Front. Immunol. 9, 1073 (2018).
Google Scholar
Shepherd, J. W., Higgins, E. J., Wollman, A. J. M. & Leake, M. C. PySTACHIO: Python Single-molecule TrAcking stoiCHiometry Intensity and simulatiOn, a flexible, extensible, beginner-friendly and optimized program for analysis of single-molecule microscopy data. Comput. Struct. Biotechnol. J. 19, 4049–4058 (2021).
Google Scholar
Leake, M. C. et al. Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443, 355–358 (2006).
Google Scholar
Dresser, L. et al. Amyloid-β oligomerization monitored by single-molecule stepwise photobleaching. Methods 193, 80–95 (2021).
Google Scholar
Leake, M. C., Wilson, D., Bullard, B. & Simmons, R. M. The elasticity of single kettin molecules using a two-bead laser-tweezers assay. FEBS Lett. 535, 55–60 (2003).
Google Scholar
Leake, M. C. Analytical tools for single-molecule fluorescence imaging in cellulo. Phys. Chem. Chem. Phys. 16, 12635–12647 (2014).
Google Scholar
Paul, T. & Myong, S. Protocol for generation and regeneration of PEG-passivated slides for single-molecule measurements. STAR Protoc. 3, 101152 (2022).
Google Scholar
Wollman, A. J. M. & Leake, M. C. Single-molecule narrow-field microscopy of protein–DNA binding dynamics in glucose signal transduction of live yeast cells. Methods Mol. Biol. 2476, 5–16 (2022).
Google Scholar
Zhou, H. X., Nguemaha, V., Mazarakos, K. & Qin, S. Why do disordered and structured proteins behave differently in phase separation. Trends Biochem. Sci 43, 499–516 (2018).
Google Scholar
Zhou, H.-X., Kota, D., Qin, S. B. & Prasad, R. Fundamental aspects of phase-separated biomolecular condensates. Chem. Rev. https://doi.org/10.1021/acs.chemrev.4c00138 (2024).
Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Google Scholar
Wu, T. Z. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).
Google Scholar
Snel, B., Lehmann, G., Bork, P. & Huynen, M. A. STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 28, 3442–3444 (2000).
Google Scholar
Pei, L. et al. Datasets for the paper ‘Aggresomes protect mRNA under stress in Escherichia coli’. Zenodo https://doi.org/10.5281/zenodo.15738775 (2025).
Pei, L. et al. Datasets for the paper ‘Aggresomes protect mRNA under stress in Escherichia coli’. Zenodo https://doi.org/10.5281/zenodo.15728316 (2025).
Yan, X. 123456yxd/code-of-RNA-seq: code for the article (v2.0). Zenodo https://doi.org/10.5281/zenodo.15803504 (2025).
york-biophysics. york-biophysics/ADEMScode: ADEMScode v2.0 (software). Zenodo https://doi.org/10.5281/zenodo.15805285 (2025).
Schaefer, C. CharleySchaefer/AggresomeIPBM: V1 (published). Zenodo https://doi.org/10.5281/zenodo.15806186 (2025).