Aggresomes protect mRNA under stress in Escherichia coli

  • Nandana, V. & Schrader, J. M. Roles of liquid–liquid phase separation in bacterial RNA metabolism. Curr. Opin. Microbiol. 61, 91–98 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Azaldegui, C. A., Vecchiarelli, A. G. & Biteen, J. S. The emergence of phase separation as an organizing principle in bacteria. Biophys. J. 120, 1123–1138 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Nandana, V., Al-Husini, N., Vaishnav, A., Dilrangi, K. H. & Schrader, J. M. Caulobacter crescentus RNase E condensation contributes to autoregulation and fitness. Mol. Biol. Cell 35, ar104 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Passos, C. et al. BR-bodies facilitate adaptive responses and survival during copper stress in Caulobacter crescentus. Preprint at bioRxiv https://doi.org/10.1101/2025.03.11.642215 (2025).

  • Al-Husini, N., Tomares, D. T., Bitar, O., Childers, W. S. & Schrader, J. M. α-Proteobacterial RNA degradosomes assemble liquid–liquid phase-separated RNP bodies. Mol. Cell 71, 1027–1039.e14 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Al-Husini, N. et al. BR-bodies provide selectively permeable condensates that stimulate mRNA decay and prevent release of decay intermediates. Mol. Cell 78, 670–682.e8 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ortiz-Rodríguez, L. A. et al. Stress changes the bacterial biomolecular condensate material state and shifts function from mRNA decay to storage. Preprint at bioRxiv https://doi.org/10.1101/2024.11.12.623272 (2024).

  • Guan, J. et al. HP-bodies – ancestral condensates that regulate RNA turnover and protein translation in bacteria. Preprint at bioRxiv https://doi.org/10.1101/2025.02.06.636932 (2025).

  • Pu, Y. Y. et al. ATP-dependent dynamic protein aggregation regulates bacterial dormancy depth critical for antibiotic tolerance. Mol. Cell 73, 143–156.e4 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Jin, X. et al. Membraneless organelles formed by liquid–liquid phase separation increase bacterial fitness. Sci. Adv. 7, eabh2929 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Y. D., Liao, H. B., Pei, L. S. & Pu, Y. Y. Combatting persister cells: the daunting task in post-antibiotics era. Cell Insight 2, 100104 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mateju, D. et al. Single-molecule imaging reveals translation of mRNAs localized to stress granules. Cell 183, 1801–1812.e13 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, X. J. et al. Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. Nat. Biotechnol. 37, 1287–1293 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Wilmaerts, D. et al. The persistence-inducing toxin HokB forms dynamic pores that cause ATP leakage. Mbio 9, e00744-18 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khong, A. et al. The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Mol. Cell 68, 808–820.e5 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schaefer, C., Michels, J. J. & van der Schoot, P. Structuring of thin-film polymer mixtures upon solvent evaporation. Macromolecules 49, 6858–6870 (2016).

    CAS 

    Google Scholar 

  • Plank, M., Wadhams, G. H. & Leake, M. C. Millisecond timescale slimfield imaging and automated quantification of single fluorescent protein molecules for use in probing complex biological processes. Integr. Biol. 1, 602–612 (2009).

    CAS 

    Google Scholar 

  • Hui, M. P., Foley, P. L. & Belasco, J. G. Messenger RNA degradation in bacterial cells. Annu. Rev. Genet. 48, 537–559 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, Z. F. & Deutscher, M. P. Purification and characterization of the Escherichia coli exoribonuclease RNase R. Comparison with RNase II. J. Biol. Chem. 277, 21624–21629 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Kroschwald, S., Maharana, S. & Simon, A. Hexanediol: a chemical probe to investigate the material properties of membrane-less compartments. Matters 3, e201702000010 (2017).

    Google Scholar 

  • Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nandana, V. et al. The BR-body proteome contains a complex network of protein–protein and protein–RNA interactions. Cell Rep. 42, 113229 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Giacalone, M. J. et al. Toxic protein expression in Escherichia coli using a rhamnose-based tightly regulated and tunable promoter system. Biotechniques 40, 355–364 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Datta, S., Costantino, N. & Court, D. L. A set of recombineering plasmids for gram-negative bacteria. Gene 379, 109–115 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Moon, S. L. et al. Multicolour single-molecule tracking of mRNA interactions with RNP granules. Nat. Cell Biol. 21, 162–168 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pu, Y. et al. Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Mol. Cell 62, 284–294 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wollman, A. J. M. & Leake, M. C. Millisecond single-molecule localization microscopy combined with convolution analysis and automated image segmentation to determine protein concentrations in complexly structured, functional cells, one cell at a time. Faraday Discuss. 184, 401–424 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Reyes-Lamothe, R., Sherratt, D. J. & Leake, M. C. Stoichiometry and architecture of active DNA replication machinery. Science 328, 498–501 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Badrinarayanan, A., Reyes-Lamothe, R., Uphoff, S., Leake, M. C. & Sherratt, D. J. In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science 338, 528–531 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Syeda, A. H. et al. Single-molecule live cell imaging of Rep reveals the dynamic interplay between an accessory replicative helicase and the replisome. Nucleic Acids Res. 47, 6287–6298 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, H., Zhou, Z. K., Wollman, A. J. M. & Leake, M. C. Superresolution imaging of single DNA molecules using stochastic photoblinking of minor groove and intercalating dyes. Methods 88, 81–88 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Cosgrove, J. et al. B cell zone reticular cell microenvironments shape CXCL13 gradient formation. Nat. Commun. 11, 3677 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, H. et al. High-speed single-molecule tracking of CXCL13 in the B-follicle. Front. Immunol. 9, 1073 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shepherd, J. W., Higgins, E. J., Wollman, A. J. M. & Leake, M. C. PySTACHIO: Python Single-molecule TrAcking stoiCHiometry Intensity and simulatiOn, a flexible, extensible, beginner-friendly and optimized program for analysis of single-molecule microscopy data. Comput. Struct. Biotechnol. J. 19, 4049–4058 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leake, M. C. et al. Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443, 355–358 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Dresser, L. et al. Amyloid-β oligomerization monitored by single-molecule stepwise photobleaching. Methods 193, 80–95 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leake, M. C., Wilson, D., Bullard, B. & Simmons, R. M. The elasticity of single kettin molecules using a two-bead laser-tweezers assay. FEBS Lett. 535, 55–60 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Leake, M. C. Analytical tools for single-molecule fluorescence imaging in cellulo. Phys. Chem. Chem. Phys. 16, 12635–12647 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Paul, T. & Myong, S. Protocol for generation and regeneration of PEG-passivated slides for single-molecule measurements. STAR Protoc. 3, 101152 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wollman, A. J. M. & Leake, M. C. Single-molecule narrow-field microscopy of protein–DNA binding dynamics in glucose signal transduction of live yeast cells. Methods Mol. Biol. 2476, 5–16 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Zhou, H. X., Nguemaha, V., Mazarakos, K. & Qin, S. Why do disordered and structured proteins behave differently in phase separation. Trends Biochem. Sci 43, 499–516 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, H.-X., Kota, D., Qin, S. B. & Prasad, R. Fundamental aspects of phase-separated biomolecular condensates. Chem. Rev. https://doi.org/10.1021/acs.chemrev.4c00138 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, T. Z. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Snel, B., Lehmann, G., Bork, P. & Huynen, M. A. STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 28, 3442–3444 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pei, L. et al. Datasets for the paper ‘Aggresomes protect mRNA under stress in Escherichia coli’. Zenodo https://doi.org/10.5281/zenodo.15738775 (2025).

  • Pei, L. et al. Datasets for the paper ‘Aggresomes protect mRNA under stress in Escherichia coli’. Zenodo https://doi.org/10.5281/zenodo.15728316 (2025).

  • Yan, X. 123456yxd/code-of-RNA-seq: code for the article (v2.0). Zenodo https://doi.org/10.5281/zenodo.15803504 (2025).

  • york-biophysics. york-biophysics/ADEMScode: ADEMScode v2.0 (software). Zenodo https://doi.org/10.5281/zenodo.15805285 (2025).

  • Schaefer, C. CharleySchaefer/AggresomeIPBM: V1 (published). Zenodo https://doi.org/10.5281/zenodo.15806186 (2025).

  • Continue Reading