The origin of hypervelocity white dwarfs in the merger disruption of He–C–O white dwarfs

  • Jordan, G. C., Perets, H. B., Fisher, R. T. & van Rossum, D. R. Failed-detonation supernovae: subluminous low-velocity Ia supernovae and their kicked remnant white dwarfs with iron-rich cores. Astrophys. J. Lett. 761, L23 (2012).

    ADS 

    Google Scholar 

  • Vennes, S. et al. An unusual white dwarf star may be a surviving remnant of a subluminous type Ia supernova. Science 357, 680–683 (2017).

    ADS 

    Google Scholar 

  • Shen, K. J. et al. Three hypervelocity white dwarfs in Gaia DR2: evidence for dynamically driven double-degenerate double-detonation type Ia supernovae. Astrophys. J. 865, 15 (2018).

    ADS 

    Google Scholar 

  • El-Badry, K. et al. The fastest stars in the Galaxy. Open J. Astrophys. 6, 28 (2023).

    Google Scholar 

  • Raddi, R. et al. Further insight on the hypervelocity white dwarf, LP 40-365 (GD 492): a nearby emissary from a single-degenerate type Ia supernova. Astrophys. J. 858, 3 (2018).

    ADS 

    Google Scholar 

  • Raddi, R. et al. Partly burnt runaway stellar remnants from peculiar thermonuclear supernovae. Mon. Not. R. Astron. Soc. 489, 1489–1508 (2019).

    ADS 

    Google Scholar 

  • Gaia Collaboration et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    Google Scholar 

  • Gaia Collaborationet al. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 674, A1 (2023).

    Google Scholar 

  • Igoshev, A. P., Perets, H. & Hallakoun, N. Hyper-runaway and hypervelocity white dwarf candidates in Gaia Data Release 3: possible remnants from Ia/Iax supernova explosions or dynamical encounters. Mon. Not. R. Astron. Soc. 518, 6223–6237 (2023).

    ADS 

    Google Scholar 

  • Scholz, R. D. Hypervelocity star candidates from Gaia DR2 and DR3 proper motions and parallaxes. Astron. Astrophys. 685, A162 (2024).

    ADS 

    Google Scholar 

  • Bhat, A. et al. Supernova shocks cannot explain the inflated state of hypervelocity runaways from white dwarf binaries. Astron. Astrophys. 693, A114 (2025).

    Google Scholar 

  • Wong, T. L. S., White, C. J. & Bildsten, L. Shocking and mass loss of compact donor stars in type Ia supernovae. Astrophys. J. 973, 65 (2024).

    Google Scholar 

  • Hansen, B. M. S. Type Ia supernovae and high-velocity white dwarfs. Astrophys. J. 582, 915–918 (2003).

    ADS 

    Google Scholar 

  • Blaauw, A. On the origin of the O- and B-type stars with high velocities (the “run-away” stars), and some related problems. Bull. Astron. Inst. Neth. 15, 265 (1961).

    ADS 

    Google Scholar 

  • Guillochon, J., Dan, M., Ramirez-Ruiz, E. & Rosswog, S. Surface detonations in double degenerate binary systems triggered by accretion stream instabilities. Astrophys. J. Lett. 709, L64–L69 (2010).

    ADS 

    Google Scholar 

  • Pakmor, R., Kromer, M., Taubenberger, S. & Springel, V. Helium-ignited violent mergers as a unified model for normal and rapidly declining type Ia supernovae. Astrophys. J. Lett. 770, L8 (2013).

    ADS 

    Google Scholar 

  • Sato, Y. et al. A systematic study of carbon-oxygen white dwarf mergers: mass combinations for type Ia supernovae. Astrophys. J. 807, 105 (2015).

    ADS 

    Google Scholar 

  • Iben Jr, I. & Tutukov, A. V. On the evolution of close binaries with components of initial mass between 3 solar masses and 12 solar masses. Astrophys. J. Suppl. Ser. 58, 661–710 (1985).

    ADS 

    Google Scholar 

  • Iben Jr, I., Nomoto, K. I., Tornambe, A. & Tutukov, A. V. On interacting helium star–white dwarf pairs as supernova precursors. Astrophys. J. 317, 717 (1987).

    ADS 

    Google Scholar 

  • Bauer, E. B., Chandra, V., Shen, K. J. & Hermes, J. J. Masses of white dwarf binary companions to type Ia supernovae measured from runaway velocities. Astrophys. J. Lett. 923, L34 (2021).

    ADS 

    Google Scholar 

  • Bauer, E. B., White, C. J. & Bildsten, L. Remnants of subdwarf helium donor stars ejected from close binaries with thermonuclear supernovae. Astrophys. J. 887, 68 (2019).

    ADS 

    Google Scholar 

  • Shields, J. V. et al. No surviving sn Ia companion in SNR 0509-67.5: stellar population characterization and comparison to models. Astrophys. J. Lett. 950, L10 (2023).

    ADS 

    Google Scholar 

  • Tanikawa, A., Nomoto, K., Nakasato, N. & Maeda, K. Double-detonation models for Type Ia Supernovae: trigger of detonation in companion white dwarfs and signatures of companions’ stripped-off materials. Astrophys. J. 885, 103 (2019).

    ADS 

    Google Scholar 

  • Pakmor, R., Zenati, Y., Perets, H. B. & Toonen, S. Thermonuclear explosion of a massive hybrid HeCO white dwarf triggered by a He detonation on a companion. Mon. Not. R. Astron. Soc. 503, 4734–4747 (2021).

    ADS 

    Google Scholar 

  • Pakmor, R. et al. On the fate of the secondary white dwarf in double-degenerate double-detonation type Ia supernovae. Mon. Not. R. Astron. Soc. 517, 5260–5271 (2022).

    ADS 

    Google Scholar 

  • Boos, S. J., Townsley, D. M. & Shen, K. J. Type Ia supernovae can arise from the detonations of both stars in a double degenerate binary. Astrophys. J. 972, 200 (2024).

    Google Scholar 

  • Pollin, J. M. et al. On the fate of the secondary white dwarf in double-degenerate double-detonation type Ia supernovae – II. 3D synthetic observables. Mon. Not. R. Astron. Soc. 533, 3036–3052 (2024).

    Google Scholar 

  • Iben Jr, I. & Tutukov, A. V. On the evolution of close binaries with components of initial mass between 3 M and 12 M. Astrophys. J. Suppl. Ser. 58, 661–710 (1985).

    ADS 

    Google Scholar 

  • Zenati, Y., Toonen, S. & Perets, H. B. Formation and evolution of hybrid He-CO white dwarfs and their properties. Mon. Not. R. Astron. Soc. 482, 1135–1142 (2019).

    ADS 

    Google Scholar 

  • Springel, V. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. R. Astron. Soc. 401, 791–851 (2010).

    ADS 

    Google Scholar 

  • Waldman, R. et al. Helium shell detonations on low-mass white dwarfs as a possible explanation for SN 2005E. Astrophys. J. 738, 21 (2011).

    ADS 

    Google Scholar 

  • Sim, S. A. et al. 2D simulations of the double-detonation model for thermonuclear transients from low-mass carbon-oxygen white dwarfs. Mon. Not. R. Astron. Soc. 420, 3003–3016 (2012).

    ADS 

    Google Scholar 

  • Zenati, Y. et al. The origins of calcium-rich supernovae from disruptions of CO white dwarfs by hybrid He-CO white dwarfs. Astrophys. J. 944, 22 (2023).

    ADS 

    Google Scholar 

  • Taubenberger, S. in The Extremes of Thermonuclear Supernovae (eds Alsabti, A. W. & Murdin, P.) Handbook of Supernovae 317 (Springer, 2017).

  • Perets, H. B. et al. A faint type of supernova from a white dwarf with a helium-rich companion. Nature 465, 322–325 (2010).

    ADS 

    Google Scholar 

  • Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3 (2011).

    ADS 

    Google Scholar 

  • Werner, K., El-Badry, K., Gänsicke, B. T. & Shen, K. J. Ultraviolet spectroscopy of the supernova Ia hypervelocity runaway white dwarf J0927-6335. Astron. Astrophys. 689, L6 (2024).

    Google Scholar 

  • Perets, H. B., Zenati, Y., Toonen, S. & Bobrick, A. Normal type Ia supernovae from disruptions of hybrid He-CO white-dwarfs by CO white-dwarfs. Preprint at https://arxiv.org/abs/1910.07532 (2019).

  • Zenati, Y., Toonen, S. & Perets, H. B. Formation and evolution of hybrid He-CO white dwarfs and their properties. Mon. Not. R. Astron. Soc. 482, 1135–1142 (2018).

    ADS 

    Google Scholar 

  • Zenati, Y., Perets, H. B. & Toonen, S. Neutron star-white dwarf mergers: early evolution, physical properties, and outcomes. Mon. Not. R. Astron. Soc. 486, 1805–1813 (2019).

    ADS 

    Google Scholar 

  • Pakmor, R., Bauer, A. & Springel, V. Magnetohydrodynamics on an unstructured moving grid. Mon. Not. R. Astron. Soc. 418, 1392–1401 (2011).

    ADS 

    Google Scholar 

  • Zhu, C., Pakmor, R., van Kerkwijk, M. H. & Chang, P. Magnetized moving mesh merger of a carbon-oxygen white dwarf binary. Astrophys. J. Lett. 806, L1 (2015).

    ADS 

    Google Scholar 

  • Weinberger, R., Springel, V. & Pakmor, R. The AREPO public code release. Astrophys. J. Suppl. Ser. 248, 32 (2020).

    ADS 

    Google Scholar 

  • Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser. 208, 4 (2013).

    ADS 

    Google Scholar 

  • Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): pulsating variable stars, rotation, convective boundaries, and energy conservation. Astrophys. J. Suppl. Ser. 243, 10 (2019).

    ADS 

    Google Scholar 

  • Bhat, A. MESA files for origins of the fastest stars from merger-disruption of he-co white dwarfs. Zenodo https://doi.org/10.5281/zenodo.15700950 (2025).

  • Pakmor, R. et al. Improving the convergence properties of the moving-mesh code AREPO. Mon. Not. R. Astron. Soc. 455, 1134–1143 (2016).

    ADS 

    Google Scholar 

  • Jermyn, A. S. et al. Modules for Experiments in Stellar Astrophysics (MESA): time-dependent convection, energy conservation, automatic differentiation, and infrastructure. Astrophys. J. Suppl. Ser. 265, 15 (2023).

    ADS 

    Google Scholar 

  • Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Google Scholar 

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    ADS 

    Google Scholar 

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Google Scholar 

  • Continue Reading