Henslee, S. L. & Rowsey, J. J. New corneal shapes in keratorefractive surgery. Ophthalmology 90, 245–250. https://doi.org/10.1016/s0161-6420(83)34567-x (1983).
Google Scholar
Patel, S., Marshall, J. & Fitzke, F. W. Model for predicting the optical performance of the eye in refractive surgery. Refract. Corneal Surg. 9, 366–375 (1993).
Google Scholar
Anera, R. G., Jiménez, J. R., del Jiménez, L., Bermúdez, J. & Hita, E. Changes in corneal asphericity after laser in situ keratomileusis. J. Cataract Refract. Surg. 29, 762–768. https://doi.org/10.1016/s0886-3350(02)01895-3 (2003).
Google Scholar
Ying, J., Cai, J., Zhu, L. & Zha, Y. Comprehensive evaluation of anterior corneal change in asphericity calculated by the tangential radius of curvature after LASIK. J. Ophthalmol. 2017, 3874371. https://doi.org/10.1155/2017/3874371 (2017).
Google Scholar
Holladay, J. T. & Janes, J. A. Topographic changes in corneal asphericity and effective optical zone after laser in situ keratomileusis. J. Cataract Refract. Surg. 28, 942–947. https://doi.org/10.1016/s0886-3350(02)01324-x (2002).
Google Scholar
Hou, J., Wang, Y., Lei, Y. & Zheng, X. Comparison of effective optical zone after small-incision lenticule extraction and femtosecond laser-assisted laser in situ keratomileusis for myopia. J. Cataract Refract. Surg. 44, 1179–1185. https://doi.org/10.1016/j.jcrs.2018.06.046 (2018).
Google Scholar
Song, Y. W. et al. Comparative study of functional optical zone: small incision lenticule extraction versus femtosecond laser assisted excimer laser keratomileusis. Int. J. Ophthalmol. 16, 238–244. https://doi.org/10.18240/ijo.2023.02.10 (2023).
Google Scholar
Roberts, C. W. & Koester, C. J. Optical zone diameters for photorefractive corneal surgery. Invest. Ophthalmol. Vis. Sci. 34, 2275–2281 (1993).
Google Scholar
Freedman, K. A., Brown, S. M., Mathews, S. M. & Young, R. S. Pupil size and the ablation zone in laser refractive surgery: considerations based on geometric optics. J. Cataract Refract. Surg. 29, 1924–1931. https://doi.org/10.1016/s0886-3350(03)00214-1 (2003).
Google Scholar
Fan-Paul, N. I., Li, J., Miller, J. S. & Florakis, G. J. Night vision disturbances after corneal refractive surgery. Surv. Ophthalmol. 47, 533–546. https://doi.org/10.1016/s0039-6257(02)00350-8 (2002).
Google Scholar
Zhang, H., Wang, Y. & Li, H. Corneal spherical aberration and corneal asphericity after small incision lenticule extraction and femtosecond Laser-Assisted LASIK. J. Ophthalmol. 2017 (4921090). https://doi.org/10.1155/2017/4921090 (2017).
Jin, H. Y., Wan, T., Yu, X. N., Wu, F. & Yao, K. Corneal higher-order aberrations of the anterior surface, posterior surface, and total cornea after small incision lenticule extraction (SMILE): high myopia versus mild to moderate myopia. BMC Ophthalmol. 18, 295. https://doi.org/10.1186/s12886-018-0965-1 (2018).
Google Scholar
Chalita, M. R., Chavala, S., Xu, M. & Krueger, R. R. Wavefront analysis in post-LASIK eyes and its correlation with visual symptoms, refraction, and topography. Ophthalmology 111, 447–453. https://doi.org/10.1016/j.ophtha.2003.06.022 (2004).
Google Scholar
Koller, T., Iseli, H. P., Hafezi, F., Mrochen, M. & Seiler, T. Q-factor customized ablation profile for the correction of myopic astigmatism. J. Cataract Refract. Surg. 32, 584–589. https://doi.org/10.1016/j.jcrs.2006.01.049 (2006).
Google Scholar
Huang, G. F. et al. Clinical studies on Q-factor guided LASIK for the correction of myopic astigmatism. [Zhonghua Yan Ke Za Zhi] Chin. J. Ophthalmol. 44, 820–824 (2008).
Srivannaboon, S., Reinstein, D. Z., Archer, T. J. & Chansue, E. Spherical aberration from myopic excimer laser ablation for aspheric and non-aspheric profiles. Optom. Vis. Sci. 89, 1211–1218. https://doi.org/10.1097/OPX.0b013e318263c2b2 (2012).
Google Scholar
Tabernero, J., Klyce, S. D., Sarver, E. J. & Artal, P. Functional optical zone of the cornea. Invest. Ophthalmol. Vis. Sci. 48, 1053–1060. https://doi.org/10.1167/iovs.06-0867 (2007).
Google Scholar
Damgaard, I. B. et al. Functional optical zone and centration following SMILE and LASIK: A prospective, randomized, contralateral eye study. J. Refract. Surg. 35, 230–237. https://doi.org/10.3928/1081597x-20190313-01 (2019).
Google Scholar
Järvenpää, J. J. Impact of patients’ baseline parameters on refractive, visual and quality of vision outcomes of corneal lenticule extraction for advanced refractive correction (CLEAR) procedure. 41st congress of the ESCRS, 8–12 September 2023, Vienna, Austria
Reinstein, D. Z., Archer, T. J. & Carp, G. I. The surgeon’s guide to SMILE: Small incision lenticule extraction. Slack Incorporated (2018).
Mrochen, M., Donitzky, C., Wüllner, C. & Löffler, J. Wavefront-optimized ablation profiles: theoretical background. J. Cataract Refract. Surg. 30, 775–785. https://doi.org/10.1016/j.jcrs.2004.01.026 (2004).
Google Scholar
Kezirian, G. M. & Stonecipher, K. G. Subjective assessment of mesopic visual function after laser in situ keratomileusis. Ophthalmol. Clin. North Am. 17, 211–224 (2004). https://doi.org/10.1016/j.ohc.2004.03.004
Gyldenkerne, A., Ivarsen, A. & Hjortdal, J. Comparison of corneal shape changes and aberrations induced by FS-LASIK and SMILE for myopia. J. Refract. Surg. 31, 223–229. https://doi.org/10.3928/1081597x-20150303-01 (2015).
Google Scholar
Ding, X., Fu, D., Wang, L., Zhou, X. & Yu, Z. Functional optical zone and visual quality after Small-Incision lenticule extraction for high myopic astigmatism. Ophthalmol. Ther. 10, 273–288. https://doi.org/10.1007/s40123-021-00330-9 (2021).
Google Scholar
Qian, Y., Chen, X., Naidu, R. K. & Zhou, X. Comparison of efficacy and visual outcomes after SMILE and FS-LASIK for the correction of high myopia with the sum of myopia and astigmatism from – 10.00 to -14.00 dioptres. Acta Ophthalmol. 98, e161–e172. https://doi.org/10.1111/aos.14078 (2020).
Google Scholar
Ying, J., Zhang, J., Cai, J. & Pan, F. Comparative change in anterior corneal asphericity after FS-LASIK and SMILE. J. Refract. Surg. 37, 158–165. https://doi.org/10.3928/1081597x-20210105-02 (2021).
Google Scholar
Yu, M., Chen, M., Liu, W. & Dai, J. Comparative study of wave-front aberration and corneal asphericity after SMILE and LASEK for myopia: a short and long term study. BMC Ophthalmol. 19, 80. https://doi.org/10.1186/s12886-019-1084-3 (2019).
Google Scholar
Mrochen, M. & Seiler, T. Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery. J. Refract. Surg. 17, 584–587. https://doi.org/10.3928/1081-597x-20010901-15 (2001).
Google Scholar
Yoon, G., Macrae, S., Williams, D. R. & Cox, I. G. Causes of spherical aberration induced by laser refractive surgery. J. Cataract Refract. Surg. 31, 127–135. https://doi.org/10.1016/j.jcrs.2004.10.046 (2005).
Google Scholar
Holladay, J. T., Dudeja, D. R. & Chang, J. Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing, and corneal topography. J. Cataract Refract. Surg. 25, 663–669. https://doi.org/10.1016/s0886-3350(99)00011-5 (1999).
Google Scholar
Qian, Y., Huang, J., Zhou, X. & Hanna, R. B. Corneal power distribution and functional optical zone following small incision lenticule extraction for myopia. J. Refract. Surg. 31, 532–538. https://doi.org/10.3928/1081597x-20150727-03 (2015).
Google Scholar
Hori-Komai, Y. et al. Comparison of LASIK using the NIDEK EC-5000 optimized aspheric transition zone (OATz) and conventional ablation profile. J. Refract. Surg. 22, 546–555. https://doi.org/10.3928/1081-597x-20060601-06 (2006).
Google Scholar