Robots that spare warehouse workers the heavy lifting | MIT News

There are some jobs human bodies just weren’t meant to do. Unloading trucks and shipping containers is a repetitive, grueling task — and a big reason warehouse injury rates are more than twice the national average.

The Pickle Robot Company wants its machines to do the heavy lifting. The company’s one-armed robots autonomously unload trailers, picking up boxes weighing up to 50 pounds and placing them onto onboard conveyor belts for warehouses of all types.

The company name, an homage to The Apple Computer Company, hints at the ambitions of founders AJ Meyer ’09, Ariana Eisenstein ’15, SM ’16, and Dan Paluska ’97, SM ’00. The founders want to make the company the technology leader for supply chain automation.

The company’s unloading robots combine generative AI and machine-learning algorithms with sensors, cameras, and machine-vision software to navigate new environments on day one and improve performance over time. Much of the company’s hardware is adapted from industrial partners. You may recognize the arm, for instance, from car manufacturing lines — though you may not have seen it in bright pickle-green.

The company is already working with customers like UPS, Ryobi Tools, and Yusen Logistics to take a load off warehouse workers, freeing them to solve other supply chain bottlenecks in the process.

“Humans are really good edge-case problem solvers, and robots are not,” Paluska says. “How can the robot, which is really good at the brute force, repetitive tasks, interact with humans to solve more problems? Human bodies and minds are so adaptable, the way we sense and respond to the environment is so adaptable, and robots aren’t going to replace that anytime soon. But there’s so much drudgery we can get rid of.”

Finding problems for robots

Meyer and Eisenstein majored in computer science and electrical engineering at MIT, but they didn’t work together until after graduation, when Meyer started the technology consultancy Leaf Labs, which specializes in building embedded computer systems for things like robots, cars, and satellites.

“A bunch of friends from MIT ran that shop,” Meyer recalls, noting it’s still running today. “Ari worked there, Dan consulted there, and we worked on some big projects. We were the primary software and digital design team behind Project Ara, a smartphone for Google, and we worked on a bunch of interesting government projects. It was really a lifestyle company for MIT kids. But 10 years go by, and we thought, ‘We didn’t get into this to do consulting. We got into this to do robots.’”

When Meyer graduated in 2009, problems like robot dexterity seemed insurmountable. By 2018, the rise of algorithmic approaches like neural networks had brought huge advances to robotic manipulation and navigation.

To figure out what problem to solve with robots, the founders talked to people in industries as diverse as agriculture, food prep, and hospitality. At some point, they started visiting logistics warehouses, bringing a stopwatch to see how long it took workers to complete different tasks.

“In 2018, we went to a UPS warehouse and watched 15 guys unloading trucks during a winter night shift,” Meyer recalls. “We spoke to everyone, and not a single person had worked there for more than 90 days. We asked, ‘Why not?’ They laughed at us. They said, ‘Have you tried to do this job before?’”

It turns out warehouse turnover is one of the industry’s biggest problems, limiting productivity as managers constantly grapple with hiring, onboarding, and training.

The founders raised a seed funding round and built robots that could sort boxes because it was an easier problem that allowed them to work with technology like grippers and barcode scanners. Their robots eventually worked, but the company wasn’t growing fast enough to be profitable. Worse yet, the founders were having trouble raising money.

“We were desperately low on funds,” Meyer recalls. “So we thought, ‘Why spend our last dollar on a warm-up task?’”

With money dwindling, the founders built a proof-of-concept robot that could unload trucks reliably for about 20 seconds at a time and posted a video of it on YouTube. Hundreds of potential customers reached out. The interest was enough to get investors back on board to keep the company alive.

The company piloted its first unloading system for a year with a customer in the desert of California, sparing human workers from unloading shipping containers that can reach temperatures up to 130 degrees in the summer. It has since scaled deployments with multiple customers and gained traction among third-party logistics centers across the U.S.

The company’s robotic arm is made by the German industrial robotics giant KUKA. The robots are mounted on a custom mobile base with an onboard computing systems so they can navigate to docks and adjust their positions inside trailers autonomously while lifting. The end of each arm features a suction gripper that clings to packages and moves them to the onboard conveyor belt.

The company’s robots can pick up boxes ranging in size from 5-inch cubes to 24-by-30 inch boxes. The robots can unload anywhere from 400 to 1,500 cases per hour depending on size and weight. The company fine tunes pre-trained generative AI models and uses a number of smaller models to ensure the robot runs smoothly in every setting.

The company is also developing a software platform it can integrate with third-party hardware, from humanoid robots to autonomous forklifts.

“Our immediate product roadmap is load and unload,” Meyer says. “But we’re also hoping to connect these third-party platforms. Other companies are also trying to connect robots. What does it mean for the robot unloading a truck to talk to the robot palletizing, or for the forklift to talk to the inventory drone? Can they do the job faster? I think there’s a big network coming in which we need to orchestrate the robots and the automation across the entire supply chain, from the mines to the factories to your front door.”

“Why not us?”

The Pickle Robot Company employs about 130 people in its office in Charlestown, Massachusetts, where a standard — if green — office gives way to a warehouse where its robots can be seen loading boxes onto conveyor belts alongside human workers and manufacturing lines.

This summer, Pickle will be ramping up production of a new version of its system, with further plans to begin designing a two-armed robot sometime after that.

“My supervisor at Leaf Labs once told me ‘No one knows what they’re doing, so why not us?’” Eisenstein says. “I carry that with me all the time. I’ve been very lucky to be able to work with so many talented, experienced people in my career. They all bring their own skill sets and understanding. That’s a massive opportunity — and it’s the only way something as hard as what we’re doing is going to work.”

Moving forward, the company sees many other robot-shaped problems for its machines.

“We didn’t start out by saying, ‘Let’s load and unload a truck,’” Meyers says. “We said, ‘What does it take to make a great robot business?’ Unloading trucks is the first chapter. Now we’ve built a platform to make the next robot that helps with more jobs, starting in logistics but then ultimately in manufacturing, retail, and hopefully the entire supply chain.”

Continue Reading