A novel two-stage deep learning approach for lung cancer using enhanced ResNet50 segmentation and LungSwarmNet classification

  • Šarić, M., Russo, M., Stella, M. & Sikora, M. (2019). CNN-based method for lung cancer detection in whole slide histopathology images. In 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech) (pp. 1–4). IEEE.

  • Pang, S., Zhang, Y., Ding, M., Wang, X. & Xie, X. A deep model for lung cancer type identification by densely connected convolutional networks and adaptive boosting. IEEE Access 8, 4799–4805 (2019).

    Google Scholar 

  • Damayanti, N. P., Ananda, M. N. D. & Nugraha, F. W. Lung cancer classification using convolutional neural network and DenseNet. J. Soft Comput. Explor. 4(3), 133–141 (2023).

    Google Scholar 

  • Kanakaraddi, S. G., Handur, V. S., Jalannavar, A., Chikaraddi, A. & Giraddi, S. Segmentation and classification of lung cancer using deep learning techniques. Procedia Comput. Sci. 235, 3226–3235 (2024).

    Google Scholar 

  • Chen, W. et al. HSN: Hybrid segmentation network for small cell lung cancer segmentation. IEEE Access 7, 75591–75603 (2019).

    Google Scholar 

  • Da Silva, G. L. F., Valente, T. L. A., Silva, A. C., De Paiva, A. C. & Gattass, M. Convolutional neural network-based PSO for lung nodule false positive reduction on CT images. Comput. Methods Programs Biomed. 162, 109–118 (2018).

    Google Scholar 

  • Sandag, G. A. & Kabo, D. T. Comparative analysis of lung cancer classification models using EfficientNet and ResNet on CT-scan lung images. CogITo Smart J. 10(1), 259–270 (2024).

    Google Scholar 

  • Cao, H. et al. Dual-branch residual network for lung nodule segmentation. Appl. Soft Comput. 86, 105934 (2020).

    Google Scholar 

  • Mohite, A. Application of transfer learning technique for detection and classification of lung cancer using CT images. Int. J. Sci. Res. Manag. 9(11), 621–634 (2021).

    Google Scholar 

  • Liu, X., Li, K. W., Yang, R. & Geng, L. S. Review of deep learning based automatic segmentation for lung cancer radiotherapy. Front. Oncol. 11, 717039 (2021).

    Google Scholar 

  • Uddin, J. Attention-based DenseNet for lung cancer classification using CT scan and histopathological images. Designs 8(2), 27 (2024).

    Google Scholar 

  • Chen, Y. et al. Classification of lungs infected COVID-19 images based on inception-ResNet. Comput. Methods Prog. Biomed. 225, 107053 (2022).

    Google Scholar 

  • Abedalla, A., Abdullah, M., Al-Ayyoub, M. & Benkhelifa, E. Chest X-ray pneumothorax segmentation using U-Net with EfficientNet and ResNet architectures. PeerJ Comput. Sci. 7, e607 (2021).

    Google Scholar 

  • WahabSait, A. R. Lung cancer detection model using deep learning technique. Appl. Sci. 13(22), 12510 (2023).

    Google Scholar 

  • Qayyum, A., Ang, C. K., Sridevi, S., Khan, M. A., Hong, L. W., Mazher, M. & Chung, T. D. (2020). Hybrid 3D-ResNet deep learning model for automatic segmentation of thoracic organs at risk in CT images. In 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM) (pp. 1–5). IEEE.

  • Arthi, T., Premkumar, S., Sivakumar, S. & Partheeban, N. (2023). Leveraging DenseNet and Genetic Algorithms for Lung Cancer Severity Classification. In 2023 1st International Conference on Optimization Techniques for Learning (ICOTL) (pp. 1–6). IEEE.

  • Mienye, I. D., Sun, Y. & Wang, Z. Improved predictive sparse decomposition method with densenet for prediction of lung cancer. Int. J. Comput. 1, 533–541 (2020).

    Google Scholar 

  • Raghuvanshi, S. S., Arya, K. V. & Patel, V. PSbBO-Net: A hybrid particle swarm and bayesian optimization-based DenseNet for lung cancer detection using histopathological and CT images. Int. J. Electr. Electron. Res. 12(3), 1074–1086 (2024).

    Google Scholar 

  • Kalaivani, N., Manimaran, N., Sophia, S. & Devi, D. D. (2020). Deep learning based lung cancer detection and classification. In IOP conference series: materials science and engineering (Vol. 994, No. 1, p. 012026). IOP Publishing.

  • Biyyala, V. (2023). Lung image segmentation: Custom U-Net with ResNet encoder architecture.

  • Asuntha, A., Singh, N. & Srinivasan, A. PSO, genetic optimization and SVM algorithm used for lung cancer detection. J. Chem. Pharm. Res. 8(6), 351–359 (2016).

    Google Scholar 

  • Lyu, J., Bi, X. & Ling, S. H. Multi-level cross residual network for lung nodule classification. Sensors 20(10), 2837 (2020).

    Google Scholar 

  • Jalali, Y., Fateh, M., Rezvani, M., Abolghasemi, V. & Anisi, M. H. ResBCDU-Net: A deep learning framework for lung CT image segmentation. Sensors 21(1), 268 (2021).

    Google Scholar 

  • Xiao, Z., Liu, B., Geng, L., Zhang, F. & Liu, Y. Segmentation of lung nodules using improved 3D-UNet neural network. Symmetry 12(11), 1787 (2020).

    Google Scholar 

  • Zhang, F., Wang, Q. & Li, H. Automatic segmentation of the gross target volume in non-small cell lung cancer using a modified version of ResNet. Technol. Cancer Res. Treat. 19, 1533033820947484 (2020).

    Google Scholar 

  • Chavan, M., Varadarajan, V., Gite, S. & Kotecha, K. Deep neural network for lung image segmentation on chest x-ray. Technologies 10(5), 105 (2022).

    Google Scholar 

  • Zhang, G., Lin, L. & Wang, J. (2021). Lung nodule classification in CT images using 3D DenseNet. In Journal of Physics: Conference Series (Vol. 1827, No. 1, p. 012155). IOP Publishing.

  • Continue Reading