Le Traon, P. Y. et al. From observation to information and users: The Copernicus Marine Service perspective. Front. Mar. Sci. 6, 234 (2019).
Sun, R. et al. SKRIPS v1.0: A regional coupled ocean-atmosphere modeling framework (MITgcm-WRF) using ESMF/NUOPC, description and preliminary results for the Red Sea. Geosci. Model Dev. 12, 4221–4244 (2019).
Sakamoto, K. et al. Development of a 2-km resolution ocean model covering the coastal seas around Japan for operational application. Ocean Dyn. 69, 1181–1202 (2019).
Ciliberti, S. A. et al. Monitoring and forecasting the ocean state and biogeochemical processes in the Black Sea: Recent developments in the Copernicus Marine Service. J. Mar. Sci. Eng. 9, 1146 (2021).
Kärnä, T. et al. Operational marine forecast model for the Baltic Sea. Nemo-Nordic 2.0. Geosci. Model Dev. 14, 5731–5749 (2021).
Zhu, X. et al. Improvements in the regional South China Sea operational oceanography forecasting system (SCSOFSv2). Geosci. Model Dev. 15, 995–1015 (2022).
Bruschi, A. et al. Indexes for the assessment of bacterial pollution in bathing waters from point sources: The northern Adriatic Sea CADEAU service. J. Environ. Manag. 293, 112878 (2021).
Liubartseva, S. et al. Modeling chronic oil pollution from ships. Mar. Pollut. Bull. (2023).
Mannarini, G., Salinas, M. L., Carelli, L., Petacco, N. & Orović, J. VISIR-2: Ship weather routing in Python. Geosci. Model Dev. 17, 4355–4382 (2024).
Coppini, G. et al. The Mediterranean forecasting system-Part 1: Evolution and performance. Ocean Sci. 19, 1483–1516 (2023).
Bi, K. et al. Accurate medium-range global weather forecasting with 3D neural networks. Nature 619, 533–538 (2023).
Nguyen, T. et al. Scaling transformer neural networks for skillful and reliable medium-range weather forecasting. Adv. Neural Inf. Process. Syst. 37, 68740–68771 (2024).
Pathak, J. et al. FourCastNet: A global data-driven high-resolution weather model using adaptive Fourier neural operators. arXiv preprint arXiv:2202.11214 (2022).
Keisler, R. Forecasting global weather with graph neural networks. arXiv preprint arXiv:2202.07575 (2022).
Lam, R. et al. Learning skillful medium-range global weather forecasting. Science 382, 1416–1421 (2023).
Oskarsson, J., Landelius, T., Deisenroth, M. & Lindsten, F. Probabilistic weather forecasting with hierarchical graph neural networks. Adv. Neural Inf. Process. Syst. 37, 41577–41648 (2024).
Dheeshjith, S. et al. Samudra: An AI global ocean emulator for climate. Geophys. Res. Lett. 52(10), e2024GL114318 (2025).
Wang, C. et al. Coupled ocean-atmosphere dynamics in a machine learning Earth system model. arXiv preprint arXiv:2406.08632 (2024).
Guo, Z. et al. Data-driven global ocean modeling for seasonal to decadal prediction. arXiv preprint arXiv:2405.15412 (2024).
Wang, X. et al. XiHe: A data-driven model for global ocean eddy-resolving forecasting. arXiv preprint arXiv:2402.02995 (2024).
Aouni, A. E. et al. GLONET: Mercator’s end-to-end neural forecasting system. arXiv preprint arXiv:2412.05454 (2024).
Cui, Y. et al. Forecasting the eddying ocean with a deep neural network. Nat. Commun. 16, 2268 (2025).
Andersson, T. R. et al. Seasonal Arctic sea ice forecasting with probabilistic deep learning. Nat. Commun. 12, 5124 (2021).
Chattopadhyay, A., Gray, M., Wu, T., Lowe, A. B. & He, R. OceanNet: A principled neural operator-based digital twin for regional oceans. Sci. Rep. 14, 21181 (2024).
Subel, A. & Zanna, L. Building ocean climate emulators. arXiv preprint arXiv:2402.04342 (2024).
Sanchez-Gonzalez, A. et al. Learning to simulate complex physics with graph networks. In International Conference on Machine Learning. 8459–8468 (2020).
Marchesiello, P., McWilliams, J. C. & Shchepetkin, A. Open boundary conditions for long-term integration of regional oceanic models. Ocean Model. 3, 1–20 (2001).
Escudier, R. et al. A high resolution reanalysis for the Mediterranean Sea. Front. Earth Sci. 9, 702285 (2021).
Hersbach, H. et al. ERA5 monthly averaged data on single levels from 1940 to present. In Copernicus Climate Change Service (C3S) Climate Data Store (CDS) (2023).
Molteni, F., Buizza, R., Palmer, T. N. & Petroliagis, T. The ECMWF ensemble prediction system: Methodology and validation. Q. J. R. Meteorol. Soc. 122, 73–119 (1996).
Lang, S. et al. AIFS – ECMWF’s data-driven forecasting system. arXiv preprint arXiv:2406.01465 (2024).
ECMWF. Plans for high resolution forecast (HRES) and ensemble forecast (ENS). In focus (2024). https://www.ecmwf.int/en/about/media-centre/focus/2024/plans-high-resolution-forecast-hres-and-ensemble-forecast-ens.
Nardelli, B. B., Tronconi, C., Pisano, A. & Santoleri, R. High and ultra-high resolution processing of satellite sea surface temperature data over southern European seas in the framework of MyOcean project. Remote Sens. Environ. 129, 1–16 (2013).
Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).
Kochkov, D. et al. Neural general circulation models for weather and climate. Nature 632, 1060–1066 (2024).
Marshall, J. & Schott, F. Open-ocean convection: Observations, theory, and models. Rev. Geophys. 37, 1–64 (1999).
Large, W. G., McWilliams, J. C. & Doney, S. C. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32, 363–403 (1994).
Wunsch, C. & Stammer, D. Atmospheric loading and the oceanic inverted barometer effect. Rev. Geophys. 35, 79–107 (1997).
Gill, A. E. Atmosphere–Ocean Dynamics (Academic Press, 1982).
Clementi, E. et al. Coupling hydrodynamic and wave models: first step and sensitivity experiments in the Mediterranean Sea. Ocean Dyn. 67, 1293–1312 (2017).
McDonagh, B., Clementi, E., Goglio, A. C. & Pinardi, N. The characteristics of tides and their effects on the general circulation of the Mediterranean Sea. Ocean Sci. 20, 1051–1066 (2024).
Rühling Cachay, S., Zhao, B., Joren, H. & Yu, R. Dyffusion: A dynamics-informed diffusion model for spatiotemporal forecasting. Adv. Neural Inf. Process. Syst. 36, 45259–45287 (2023).
Andrae, M., Landelius, T., Oskarsson, J. & Lindsten, F. Continuous ensemble weather forecasting with diffusion models. In International Conference on Learning Representations (2025).
Nipen, T. N. et al. Regional data-driven weather modeling with a global stretched-grid. arXiv preprint arXiv:2409.02891 (2024).
Adamov, S. et al. Building machine learning limited area models: Kilometer-scale weather forecasting in realistic settings. arXiv preprint arXiv:2504.09340 (2025).
Nguyen, T., Brandstetter, J., Kapoor, A., Gupta, J. K. & Grover, A. ClimaX: A foundation model for weather and climate. In International Conference on Machine Learning (2023).
Bodnar, C. et al. A foundation model for the Earth system. Nature 1–8 (2025).
Price, I. et al. Probabilistic weather forecasting with machine learning. Nature 637, 84–90 (2025).
Larsson, E., Oskarsson, J., Landelius, T. & Lindsten, F. Diffusion-LAM: Probabilistic limited area weather forecasting with diffusion. arXiv preprint arXiv:2502.07532 (2025).
Fortunato, M., Pfaff, T., Wirnsberger, P., Pritzel, A. & Battaglia, P. Multiscale meshgraphnets. arXiv preprint arXiv:2210.00612 (2022).
Battaglia, P., Pascanu, R., Lai, M., Jimenez Rezende, D. et al. Interaction networks for learning about objects, relations and physics. Adv. Neural Inf. Process. Syst. 29 (2016).
Ramachandran, P., Zoph, B. & Le, Q. V. Searching for activation functions. arXiv preprint arXiv:1710.05941 (2017).
Ba, J., Kiros, J. & Hinton, G. Layer normalization. arXiv preprint arXiv:1607.06450 (2016).
Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. In International Conference on Learning Representations (2019).
Madec, G. et al. NEMO ocean engine. In Scientific Notes of Climate Modelling Center. Vol. 27 (2017).
WAVEWATCH III Development Group (WW3DG). User Manual and System Documentation of WAVEWATCH III Version 6.07. In Technical Note 333, NOAA/NWS/NCEP/MMAB, College Park, MD, USA (2019).
Dobricic, S. & Pinardi, N. An oceanographic three-dimensional variational data assimilation scheme. Ocean Model. 22, 89–105 (2008).
Weatherall, P. et al. A new digital bathymetric model of the world’s oceans. Earth Sp. Sci. 2, 331–345 (2015).
Hellerman, S. & Rosenstein, M. Normal monthly wind stress over the world ocean with error estimates. J. Phys. Oceanogr. 13, 1093–1104 (1983).