Accurate Mediterranean Sea forecasting via graph-based deep learning

  • Le Traon, P. Y. et al. From observation to information and users: The Copernicus Marine Service perspective. Front. Mar. Sci. 6, 234 (2019).

    Google Scholar 

  • Sun, R. et al. SKRIPS v1.0: A regional coupled ocean-atmosphere modeling framework (MITgcm-WRF) using ESMF/NUOPC, description and preliminary results for the Red Sea. Geosci. Model Dev. 12, 4221–4244 (2019).

    Google Scholar 

  • Sakamoto, K. et al. Development of a 2-km resolution ocean model covering the coastal seas around Japan for operational application. Ocean Dyn. 69, 1181–1202 (2019).

    Google Scholar 

  • Ciliberti, S. A. et al. Monitoring and forecasting the ocean state and biogeochemical processes in the Black Sea: Recent developments in the Copernicus Marine Service. J. Mar. Sci. Eng. 9, 1146 (2021).

    Google Scholar 

  • Kärnä, T. et al. Operational marine forecast model for the Baltic Sea. Nemo-Nordic 2.0. Geosci. Model Dev. 14, 5731–5749 (2021).

  • Zhu, X. et al. Improvements in the regional South China Sea operational oceanography forecasting system (SCSOFSv2). Geosci. Model Dev. 15, 995–1015 (2022).

    Google Scholar 

  • Bruschi, A. et al. Indexes for the assessment of bacterial pollution in bathing waters from point sources: The northern Adriatic Sea CADEAU service. J. Environ. Manag. 293, 112878 (2021).

    Google Scholar 

  • Liubartseva, S. et al. Modeling chronic oil pollution from ships. Mar. Pollut. Bull. (2023).

  • Mannarini, G., Salinas, M. L., Carelli, L., Petacco, N. & Orović, J. VISIR-2: Ship weather routing in Python. Geosci. Model Dev. 17, 4355–4382 (2024).

    Google Scholar 

  • Coppini, G. et al. The Mediterranean forecasting system-Part 1: Evolution and performance. Ocean Sci. 19, 1483–1516 (2023).

    Google Scholar 

  • Bi, K. et al. Accurate medium-range global weather forecasting with 3D neural networks. Nature 619, 533–538 (2023).

    Google Scholar 

  • Nguyen, T. et al. Scaling transformer neural networks for skillful and reliable medium-range weather forecasting. Adv. Neural Inf. Process. Syst. 37, 68740–68771 (2024).

    Google Scholar 

  • Pathak, J. et al. FourCastNet: A global data-driven high-resolution weather model using adaptive Fourier neural operators. arXiv preprint arXiv:2202.11214 (2022).

  • Keisler, R. Forecasting global weather with graph neural networks. arXiv preprint arXiv:2202.07575 (2022).

  • Lam, R. et al. Learning skillful medium-range global weather forecasting. Science 382, 1416–1421 (2023).

    Google Scholar 

  • Oskarsson, J., Landelius, T., Deisenroth, M. & Lindsten, F. Probabilistic weather forecasting with hierarchical graph neural networks. Adv. Neural Inf. Process. Syst. 37, 41577–41648 (2024).

    Google Scholar 

  • Dheeshjith, S. et al. Samudra: An AI global ocean emulator for climate. Geophys. Res. Lett. 52(10), e2024GL114318 (2025).

    Google Scholar 

  • Wang, C. et al. Coupled ocean-atmosphere dynamics in a machine learning Earth system model. arXiv preprint arXiv:2406.08632 (2024).

  • Guo, Z. et al. Data-driven global ocean modeling for seasonal to decadal prediction. arXiv preprint arXiv:2405.15412 (2024).

  • Wang, X. et al. XiHe: A data-driven model for global ocean eddy-resolving forecasting. arXiv preprint arXiv:2402.02995 (2024).

  • Aouni, A. E. et al. GLONET: Mercator’s end-to-end neural forecasting system. arXiv preprint arXiv:2412.05454 (2024).

  • Cui, Y. et al. Forecasting the eddying ocean with a deep neural network. Nat. Commun. 16, 2268 (2025).

    Google Scholar 

  • Andersson, T. R. et al. Seasonal Arctic sea ice forecasting with probabilistic deep learning. Nat. Commun. 12, 5124 (2021).

    Google Scholar 

  • Chattopadhyay, A., Gray, M., Wu, T., Lowe, A. B. & He, R. OceanNet: A principled neural operator-based digital twin for regional oceans. Sci. Rep. 14, 21181 (2024).

    Google Scholar 

  • Subel, A. & Zanna, L. Building ocean climate emulators. arXiv preprint arXiv:2402.04342 (2024).

  • Sanchez-Gonzalez, A. et al. Learning to simulate complex physics with graph networks. In International Conference on Machine Learning. 8459–8468 (2020).

  • Marchesiello, P., McWilliams, J. C. & Shchepetkin, A. Open boundary conditions for long-term integration of regional oceanic models. Ocean Model. 3, 1–20 (2001).

    Google Scholar 

  • Escudier, R. et al. A high resolution reanalysis for the Mediterranean Sea. Front. Earth Sci. 9, 702285 (2021).

    Google Scholar 

  • Hersbach, H. et al. ERA5 monthly averaged data on single levels from 1940 to present. In Copernicus Climate Change Service (C3S) Climate Data Store (CDS) (2023).

  • Molteni, F., Buizza, R., Palmer, T. N. & Petroliagis, T. The ECMWF ensemble prediction system: Methodology and validation. Q. J. R. Meteorol. Soc. 122, 73–119 (1996).

    Google Scholar 

  • Lang, S. et al. AIFS – ECMWF’s data-driven forecasting system. arXiv preprint arXiv:2406.01465 (2024).

  • ECMWF. Plans for high resolution forecast (HRES) and ensemble forecast (ENS). In focus (2024). https://www.ecmwf.int/en/about/media-centre/focus/2024/plans-high-resolution-forecast-hres-and-ensemble-forecast-ens.

  • Nardelli, B. B., Tronconi, C., Pisano, A. & Santoleri, R. High and ultra-high resolution processing of satellite sea surface temperature data over southern European seas in the framework of MyOcean project. Remote Sens. Environ. 129, 1–16 (2013).

    Google Scholar 

  • Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    Google Scholar 

  • Kochkov, D. et al. Neural general circulation models for weather and climate. Nature 632, 1060–1066 (2024).

    Google Scholar 

  • Marshall, J. & Schott, F. Open-ocean convection: Observations, theory, and models. Rev. Geophys. 37, 1–64 (1999).

    Google Scholar 

  • Large, W. G., McWilliams, J. C. & Doney, S. C. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32, 363–403 (1994).

    Google Scholar 

  • Wunsch, C. & Stammer, D. Atmospheric loading and the oceanic inverted barometer effect. Rev. Geophys. 35, 79–107 (1997).

    Google Scholar 

  • Gill, A. E. Atmosphere–Ocean Dynamics (Academic Press, 1982).

  • Clementi, E. et al. Coupling hydrodynamic and wave models: first step and sensitivity experiments in the Mediterranean Sea. Ocean Dyn. 67, 1293–1312 (2017).

    Google Scholar 

  • McDonagh, B., Clementi, E., Goglio, A. C. & Pinardi, N. The characteristics of tides and their effects on the general circulation of the Mediterranean Sea. Ocean Sci. 20, 1051–1066 (2024).

    Google Scholar 

  • Rühling Cachay, S., Zhao, B., Joren, H. & Yu, R. Dyffusion: A dynamics-informed diffusion model for spatiotemporal forecasting. Adv. Neural Inf. Process. Syst. 36, 45259–45287 (2023).

    Google Scholar 

  • Andrae, M., Landelius, T., Oskarsson, J. & Lindsten, F. Continuous ensemble weather forecasting with diffusion models. In International Conference on Learning Representations (2025).

  • Nipen, T. N. et al. Regional data-driven weather modeling with a global stretched-grid. arXiv preprint arXiv:2409.02891 (2024).

  • Adamov, S. et al. Building machine learning limited area models: Kilometer-scale weather forecasting in realistic settings. arXiv preprint arXiv:2504.09340 (2025).

  • Nguyen, T., Brandstetter, J., Kapoor, A., Gupta, J. K. & Grover, A. ClimaX: A foundation model for weather and climate. In International Conference on Machine Learning (2023).

  • Bodnar, C. et al. A foundation model for the Earth system. Nature 1–8 (2025).

  • Price, I. et al. Probabilistic weather forecasting with machine learning. Nature 637, 84–90 (2025).

    Google Scholar 

  • Larsson, E., Oskarsson, J., Landelius, T. & Lindsten, F. Diffusion-LAM: Probabilistic limited area weather forecasting with diffusion. arXiv preprint arXiv:2502.07532 (2025).

  • Fortunato, M., Pfaff, T., Wirnsberger, P., Pritzel, A. & Battaglia, P. Multiscale meshgraphnets. arXiv preprint arXiv:2210.00612 (2022).

  • Battaglia, P., Pascanu, R., Lai, M., Jimenez Rezende, D. et al. Interaction networks for learning about objects, relations and physics. Adv. Neural Inf. Process. Syst. 29 (2016).

  • Ramachandran, P., Zoph, B. & Le, Q. V. Searching for activation functions. arXiv preprint arXiv:1710.05941 (2017).

  • Ba, J., Kiros, J. & Hinton, G. Layer normalization. arXiv preprint arXiv:1607.06450 (2016).

  • Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. In International Conference on Learning Representations (2019).

  • Madec, G. et al. NEMO ocean engine. In Scientific Notes of Climate Modelling Center. Vol. 27 (2017).

  • WAVEWATCH III Development Group (WW3DG). User Manual and System Documentation of WAVEWATCH III Version 6.07. In Technical Note 333, NOAA/NWS/NCEP/MMAB, College Park, MD, USA (2019).

  • Dobricic, S. & Pinardi, N. An oceanographic three-dimensional variational data assimilation scheme. Ocean Model. 22, 89–105 (2008).

    Google Scholar 

  • Weatherall, P. et al. A new digital bathymetric model of the world’s oceans. Earth Sp. Sci. 2, 331–345 (2015).

    Google Scholar 

  • Hellerman, S. & Rosenstein, M. Normal monthly wind stress over the world ocean with error estimates. J. Phys. Oceanogr. 13, 1093–1104 (1983).

    Google Scholar 

  • Continue Reading