Langley GF, Anderson LJ. Epidemiology and prevention of respiratory syncytial virus infections among infants and young children. Pediatr Infect Dis J. 2011. https://doi.org/10.1097/INF.0b013e3182184ae7.
Google Scholar
Branche AR, Falsey AR. Respiratory syncytial virus infection in older adults: an under-recognized problem. Drugs Aging. 2015. https://doi.org/10.1007/s40266-015-0258-9.
Google Scholar
Branche AR, Saiman L, Walsh EE, Falsey AR, Sieling WD, Greendyke W, et al. Incidence of respiratory syncytial virus infection among hospitalized adults, 2017–2020. Clin Infect Dis. 2022. https://doi.org/10.1093/cid/ciab595.
Google Scholar
Nguyen-Van-tam JS, O’leary M, Martin ET, Heijnen E, Callendret B, Fleischhackl R, Comeaux C, Tran TMP, Weber K. Burden of respiratory syncytial virus infection in older and high-risk adults: a systematic review and meta-analysis of the evidence from developed countries. Eur Respir Rev. 2022;31(166):220105. https://doi.org/10.1183/16000617.0105-2022. PMID: 36384703; PMCID: PMC9724807.
Li Y, Kulkarni D, Begier E, Wahi-Singh P, Wahi-Singh B, Gessner B, et al. Adjusting for case under-ascertainment in estimating RSV hospitalisation burden of older adults in high-income countries: a systematic review and modelling study. Infect Dis Ther. 2023;12(4):1137–49.
Google Scholar
Kelleher K, Subramaniam N, Drysdale SB. The recent landscape of RSV vaccine research. Ther Adv Vaccines Immunother. 2025;10: 13.
UKSHA, NHS England. Introduction of new NHS vaccination programmes against respiratory syncytial virus (RSV). https://www.gov.uk/government/publications/respiratory-syncytial-virus-rsv-vaccination-programmes-letter/introduction-of-new-nhs-vaccination-programmes-against-respiratory-syncytial-virus-rsv. 2024 Jun.
Walsh EE, Pérez Marc G, Zareba AM, Falsey AR, Jiang Q, Patton M, et al. Efficacy and safety of a bivalent RSV prefusion F vaccine in older adults. N Engl J Med. 2023;388(16):1465–77.
Google Scholar
Falsey AR, Cameron A, Branche AR, Walsh EE. Perturbations in respiratory syncytial virus activity during the SARS-CoV-2 pandemic. J Infect Dis. 2023. https://doi.org/10.1093/infdis/jiac434.
Google Scholar
Jefferson T, Del Mar CB, Dooley L, Ferroni E, Al-Ansary LA, Bawazeer GA, et al. Physical interventions to interrupt or reduce the spread of respiratory viruses. Cochrane Database Syst Rev. 2011;2020. https://doi.org/10.1002/14651858.CD006207.pub5.
Brooks-Pollock E, Read JM, McLean AR, Keeling MJ, Danon L. Mapping social distancing measures to the reproduction number for COVID-19. Philos Trans R Soc B Biol Sci. 2021;376(1829). https://doi.org/10.1098/rstb.2020.0276.
Choi YH, Miller E. Impact of COVID-19 social distancing measures on future incidence of invasive pneumococcal disease in England and Wales: a mathematical modelling study. BMJ Open. 2021. https://doi.org/10.1136/bmjopen-2020-045380.
Google Scholar
Fleming DM, Taylor RJ, Lustig RL, Schuck-Paim C, Haguinet F, Webb DJ, et al. Modelling estimates of the burden of Respiratory Syncytial virus infection in adults and the elderly in the United Kingdom. 2015;15(1). https://doi.org/10.1186/s12879-015-1218-z.
Sharp A, Minaji M, Panagiotopoulos N, Reeves R, Charlett A, Pebody R. Estimating the burden of adult hospital admissions due to RSV and other respiratory pathogens in England. Influenza Other Respi Viruses. 2022;16(1):125–31.
Johannesen CK, van Wijhe M, Tong S, Fernández LV, Heikkinen T, van Boven M, et al. Age-specific estimates of respiratory syncytial virus-associated hospitalizations in 6 European Countries: a time series analysis. J Infect Dis. 2022;226(Supplement_1):S29-37.
Google Scholar
Rozenbaum MH, Judy J, Tran D, Yacisin K, Kurosky SK, Begier E. Low levels of RSV testing among adults hospitalized for lower respiratory tract infection in the United States. Infect Dis Ther. 2023. https://doi.org/10.1007/s40121-023-00758-5.
Google Scholar
Hyams C, Begier E, Garcia Gonzalez M, Southern J, Campling J, Gray S, et al. Incidence of acute lower respiratory tract disease hospitalisations, including pneumonia, among adults in Bristol, UK, 2019, estimated using both a prospective and retrospective methodology. BMJ Open. 2022. https://doi.org/10.1136/bmjopen-2021-057464.
Google Scholar
Onwuchekwa C, Moreo LM, Menon S, Machado B, Curcio D, Kalina W, et al. Underascertainment of respiratory syncytial virus infection in adults due to diagnostic testing limitations: a systematic literature review and meta-analysis. J Infect Dis. 2023;228(2):173–84.
Google Scholar
Ramirez J, Carrico R, Wilde A, Junkins A, Furmanek S, Chandler T, et al. Diagnosis of respiratory syncytial virus in adults substantially increases when adding sputum, saliva, and serology testing to nasopharyngeal swab RT–PCR. Infect Dis Ther. 2023. https://doi.org/10.1007/s40121-023-00805-1.
Google Scholar
Rozenbaum MH, Begier E, Kurosky SK, Whelan J, Bem D, Pouwels KB, et al. Incidence of respiratory syncytial virus infection in older adults: limitations of current data. Infect Dis Ther. 2023;12:1487–504.
Google Scholar
Osei-Yeboah R, Spreeuwenberg P, Del Riccio M, Fischer TK, Egeskov-Cavling AM, Bøås H, et al. Estimation of the number of respiratory syncytial virus-associated hospitalizations in adults in the European Union. J Infect Dis. 2023;228(11):1539–48.
Google Scholar
Gelman A, Carpenter B. Bayesian analysis of tests with unknown specificity and sensitivity. J Royal Stat Soc Ser C: Appl Stat. 2020. https://doi.org/10.1111/rssc.12435.
Google Scholar
Parikh R, Mathai A, Parikh S, Chandra Sekhar G, Thomas R. Understanding and using sensitivity, specificity and predictive values. 2008. https://doi.org/10.4103/0301-4738.37595.
Maxim LD, Niebo R, Utell MJ. Screening tests: a review with examples. Inhal Toxicol. 2014;26(13):811–28.
Google Scholar
Zhou X, McClish D, Obuchowski N. Statistical methods in diagnostic medicine. 1st ed. Wiley 2002. 50–51.
Dawid AP, Skene AM. Maximum likelihood estimation of observer error-rates using the EM Algorithm. J R Stat Soc Ser C Appl Stat. 1979;28. https://doi.org/10.2307/2346806.
Hui SL, Walter SD. Estimating the error rates of diagnostic tests. Biometrics. 1980. https://doi.org/10.2307/2530508.
Google Scholar
van Smeden M, Naaktgeboren CA, Reitsma JB, Moons KGM, de Groot JAH. Latent class models in diagnostic studies when there is no reference standard–a systematic review. Am J Epidemiol. 2014;179(4):423–31.
Google Scholar
Ferraz MB, Walter SD, Heymann R, Atra E. Sensitivity and specificity of different diagnostic criteria for behcet’s disease according to the latent class approach. Br J Rheumatol. 1995. https://doi.org/10.1093/rheumatology/34.10.932.
Google Scholar
Hadgu A, Qu Y. A biomedical application latent class models with random effects. J R Stat Soc Ser C Appl Stat. 1998;47. https://doi.org/10.1111/1467-9876.00131.
Moayyedi P, Duffy J, Delaney B. New approaches to enhance the accuracy of the diagnosis of reflux disease. Gut. 2004;53. https://doi.org/10.1136/gut.2003.034363.
Chappuis F, Rijal S, Jha UK, Desjeux P, Karki BMS, Koirala S, et al. Field validity, reproducibility and feasibility of diagnostic tests for visceral leishmaniasis in rural Nepal. Trop Med Int Heal. 2006;11(1):31–40.
MacLean EL, Kohli M, Köppel L, Schiller I, Sharma SK, Pai M, et al. Bayesian latent class analysis produced diagnostic accuracy estimates that were more interpretable than composite reference standards for extrapulmonary tuberculosis tests. Diagnostic Progn Res. 2022;6(1). https://doi.org/10.1186/s41512-022-00125-x.
Challen R, Chatzilena A, Qian G, Oben G, Kwiatkowska R, Hyams C, et al. Combined multiplex panel test results are a poor estimate of disease prevalence without adjustment for test error. PLoS Comput Biol. 2024. https://doi.org/10.1371/journal.pcbi.1012062.
Google Scholar
Hyams C, Challen R, Begier E, Southern J, King J, Morley A, et al. Incidence of community acquired lower respiratory tract disease in Bristol, UK during the COVID-19 pandemic: a prospective cohort study. Lancet Reg Heal – Eur. 2022;21:100473.
Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)-a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009. https://doi.org/10.1016/j.jbi.2008.08.010.
Google Scholar
Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987. https://doi.org/10.1016/0021-9681(87)90171-8.
Google Scholar
Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I, et al. A global clinical measure of fitness and frailty in elderly people. C Can Med Assoc J. 2005;173(5). https://doi.org/10.1503/cmaj.050051.
Lim WS, Van Der Eerden MM, Laing R, Boersma WG, Karalus N, Town GI, et al. Defining community acquired pneumonia severity on presentation to hospital: an international derivation and validation study. Thorax. 2003. https://doi.org/10.1136/thorax.58.5.377.
Google Scholar
National Institute for Clinical Excellence. Pneumonia in adults: diagnosis and management Clinical guideline. 2023.
Loader C. Local regression and likelihood. New York: Springer-Verlag; 1999.
R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2021.
Stan Development Team. RStan: the R interface to Stan. 2024.
Qu Y, Tan M, Kutner MH. Random effects models in latent class analysis for evaluating accuracy of diagnostic tests. Biometrics. 1996. https://doi.org/10.2307/2533043.
Google Scholar
Keddie SH, Baerenbold O, Keogh RH, Bradley J. Estimating sensitivity and specificity of diagnostic tests using latent class models that account for conditional dependence between tests: a simulation study. BMC Med Res Methodol. 2023. https://doi.org/10.1186/s12874-023-01873-0.
Google Scholar
Makowski D, Ben-Shachar M, Lüdecke D. bayestestR: Describing effects and their uncertainty, existence and significance within the bayesian framework. J Open Source Softw. 2019;4(40). https://joss.theoj.org/papers/10.21105/joss.01541.
Campling J, Begier E, Vyse A, et al. A novel approach to estimate the local population denominator to calculate disease incidence for hospital-based health events in England. Epidemiol Infect. 2022. https://doi.org/10.1017/S0950268822000917.
Google Scholar
Rogan WJ, Gladen B. Estimating prevalence from the results of a screening test. Am J Epidemiol. 1978;107(1):71–6.
Google Scholar
Löwensteyn YN, Zheng Z, Rave N, Bannier MAGE, Billard MN, Casalegno JS, et al. Year-round RSV transmission in the netherlands following the COVID-19 Pandemic – a prospective nationwide observational and modeling study. medRxiv. 2022. https://doi.org/10.1093/infdis/jiad282.
Stein RT, Zar HJ. RSV through the COVID-19 pandemic: burden, shifting epidemiology, and implications for the future. Pediatr Pulmonol. 2023;58(6):1631–9.
Google Scholar
UKSHA. National Influenza and COVID-19 surveillance report: Week 45 report (up to week 44 data). 2023.
Savic M, Penders Y, Shi T, Branche A, Pirçon JY. Respiratory syncytial virus disease burden in adults aged 60 years and older in high-income countries: a systematic literature review and meta-analysis. Influenza Other Respi Viruses. 2023. https://doi.org/10.1111/irv.13031.
Google Scholar
Doty B, Ghaswalla P, Bohn RL, Stoszek SK, Panozzo CA. Incidence of RSV in adults: a comprehensive review of observational studies and critical gaps in information. J Infect Dis. 2024. https://doi.org/10.1093/infdis/jiae314.
Google Scholar
Widmer K, Zhu Y, Williams JV, Griffin MR, Edwards KM, Talbot HK. Rates of hospitalizations for respiratory syncytial virus, human metapneumovirus, and influenza virus in older adults. J Infect Dis. 2012. https://doi.org/10.1093/infdis/jis309.
Google Scholar
Mclaughlin JM, Khan F, Begier E, Swerdlow DL, Jodar L, Falsey AR. Rates of medically attended RSV among US adults: a systematic review and meta-analysis. Open Forum Infect Dis. 2022;9(7):1–10.
Google Scholar
Wyllie AL, Fournier J, Casanovas-Massana A, Campbell M, Tokuyama M, Vijayakumar P, et al. Saliva or nasopharyngeal swab specimens for detection of SARS-CoV-2. N Engl J Med. 2020. https://doi.org/10.1056/NEJMc2016359.
Google Scholar
Walsh EE, Peterson DR, Kalkanoglu AE, Lee FEH, Falsey AR. Viral shedding and immune responses to respiratory syncytial virus infection in older adults. J Infect Dis. 2013;207(9):1424–32.
Google Scholar
Branche AR, Walsh EE, Formica MA, Falsey AR. Detection of respiratory viruses in sputum from adults by use of automated multiplex PCR. J Clin Microbiol. 2014;52(10):3590–6.
Google Scholar
Falsey AR, Formica MA, Walsha EE. Yield of sputum for viral detection by reverse transcriptase PCR in adults hospitalized with respiratory illness. J Clin Microbiol. 2012;50(1). https://doi.org/10.1128/JCM.05841-11.
Jeong JH, Kim KH, Jeong SH, Park JW, Lee SM, Seo YH. Comparison of sputum and nasopharyngeal swabs for detection of respiratory viruses. J Med Virol. 2014. https://doi.org/10.1002/jmv.23937.
Google Scholar
Honein MA, Paulozzi LJ. Birth defects surveillance: Assessing the “gold standard.” Am J Public Health. 1999. https://doi.org/10.2105/AJPH.89.8.1238.
Google Scholar
World Population Review. Bristol Population 2024. https://worldpopulationreview.com/world-cities/bristol-population. 2024.