Rezk, M. R., Fayed, A. S., Marzouk, H. M. & Abbas, S. S. Potentiometric ion-selective electrodes for determination of cyclopentolate hydrochloride and phenylephrine hydrochloride in their challenging ophthalmic formulation. J. Solid State Electrochem. 22, 3351–3361 (2018).
Google Scholar
Moaaz, E. M., Abdel-Moety, E. M., Rezk, M. R. & Fayed, A. S. Stability-indicating determination of tedizolid phosphate in the presence of its active form and possible degradants. J. Chromatogr. Sci. 60, 51–60. https://doi.org/10.1093/chromsci/bmab045 (2022).
Google Scholar
Rezk, M. R. & Badr, K. A. Development, optimization and validation of a highly sensitive UPLC–ESI-MS/MS method for simultaneous quantification of amlodipine, Benazeprile and Benazeprilat in human plasma: application to a bioequivalence study. J. Pharm. Biomed. Anal. 98, 1–8 (2014).
Google Scholar
Rezk, M. R., Basalious, E. B. & Badr, K. A. Novel determination of Sofosbuvir and velpatasvir in human plasma by UPLC–MS/MS method: application to a bioequivalence study. Biomed. Chromatogr. 32, e4347 (2018).
Google Scholar
Rezk, M. R., Safa’a, M. R., Khattab, F. I. & Marzouk, H. M. Multi-residues determination of antimicrobials in fish tissues by HPLC–ESI-MS/MS method. J. Chromatog B. 978, 103–110 (2015).
Rezk, M. R. & Badr, K. A. Quantification of amlodipine and Atorvastatin in human plasma by UPLC–MS/MS method and its application to a bioequivalence study. Biomed. Chromatogr. 32, e4224 (2018).
Google Scholar
Gouda, A. S., Abdel-Megied, A. M., Rezk, M. R. & Marzouk, H. M. LC-MS/MS-based metabolite quantitation of the antiviral prodrug Baloxavir marboxil, a new therapy for acute uncomplicated influenza, in human plasma: application to a human Pharmacokinetic study. J. Pharm. Biomed. Anal. 223, 115165 (2023).
Google Scholar
Mouhamed, A. A., Eltanany, B. M., Mostafa, N. M. & Nadim, A. H. Development of response surface approach for determination of paracetamol, Chlorpheniramine maleate, caffeine and ascorbic acid by green HPLC method: a desirability-based optimization. J. Chromatogr. Sci. bmae024. https://doi.org/10.1093/chromsci/bmae024 (2024).
Hussein, O. G. et al. Arduino-based portable point-of-care colorimetric glucose biosensor using nanozyme with enhanced peroxidase-like activity. Talanta Open, 100519 (2025).
Bobacka, J., Ivaska, A. & Lewenstam, A. Potentiometric ion sensors. Chem. Rev. 108, 329–351 (2008).
Google Scholar
Kadara, R. O., Jenkinson, N. & Banks, C. E. Characterization and fabrication of disposable screen printed microelectrodes. Electrochem. Commun. 11, 1377–1380 (2009).
Google Scholar
Rezk, M. R., Fayed, A. S., Marzouk, H. M. & Abbas, S. S. Green ion selective electrode potentiometric application for the determination of Cinchocaine hydrochloride in presence of its degradation products and betamethasone valerate: a comparative study of liquid and solid inner contact ion-selective electrode membranes. J. Electrochem. Soc. 164, H628 (2017).
Google Scholar
Elghobashy, M. R., Mahmoud, A. M., Rezk, M. R. & El-Rahman, M. K. A. Strategy for fabrication of stable Tramadol solid-contact ion-selective potentiometric sensor based on polyaniline nanoparticles. J. Electrochem. Soc. 162, H1–H5 (2014).
Bakker, E. & Pretsch, E. Potentiometric sensors for trace-level analysis. Trends Anal. Chem. 24, 199–207 (2005).
Google Scholar
Fibbioli, M., Morf, W. E., Badertscher, M., de Rooij, N. F. & Pretsch, E. Potential drifts of solid contacted ion selective electrodes due to zero current ion fluxes through the sensor membrane. Electroanalysis 12, 1286–1292 (2000).
Google Scholar
Hussein, O. G. et al. Novel solid-contact ion-selective electrode based on a polyaniline transducer layer for determination of alcaftadine in biological fluid. RSC Adv. 13, 7645–7655 (2023).
Google Scholar
Fenelon, A. M. & Breslin, C. B. The electrochemical synthesis of polypyrrole at a copper electrode: corrosion protection properties. Electrochim. Acta. 47, 4467–4476 (2002).
Google Scholar
Mahmoud, A. M., El-Rahman, M. K. A., Elghobashy, M. R. & Rezk, M. R. Carbon nanotubes versus polyaniline nanoparticles; which transducer offers more opportunities for designing a stable solid contact ion-selective electrode. J. Electroanal. Chem. 755, 122–126 (2015).
Google Scholar
Moaaz, E. M., Mahmoud, A., Fayed, A. S., Rezk, M. R. & Abdel-Moety, E. M. Determination of tedizolid phosphate using graphene nanocomposite based solid contact ion selective electrode; green profile assessment by eco-scale and GAPI approach. Electroanalysis 33, 1895–1901. https://doi.org/10.1002/elan.202100067 (2021).
Google Scholar
Mahmoud, A. M., Moaaz, E. M., Rezk, M. R., Abdel-Moety, E. M. & Fayed, A. S. Microfabricated solid‐contact potentiometric sensor for determination of tedizolid phosphate, application to content uniformity testing. Electroanalysis 35, e202200115. https://doi.org/10.1002/elan.202200115 (2023).
Google Scholar
Saad, M. N., Marzouk, H. A. M., Amer, S. M., El-Sherbiny, I. M. & Mahmoud, A. M. Computationally optimized graphene-based electrochemical sensor with enhanced signal stability for the determination of the antimicrobial agent 9-aminoacridine. J. Electrochem. Soc. 171 107511, doi:http://doi.10.1149/-7111/ad8522 (2024). (1945).
Brownson, D. A. C. & Banks, C. E. Graphene electrochemistry: an overview of potential applications. Analyst 135, 2768–2778 (2010).
Google Scholar
Alwarappan, S., Liu, C., Kumar, A. & Li, C. Z. Enzyme-doped graphene nanosheets for enhanced glucose biosensing. J. Phys. Chem. C. 114, 12920–12924 (2010).
Google Scholar
Hummers, W. S. Jr & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958).
Google Scholar
Guardia, L. et al. High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 49, 1653–1662 (2011).
Google Scholar
Li, J., Guo, S., Zhai, Y. & Wang, E. Nafion-graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium. Electrochem. Commun. 11, 1085–1088 (2009).
Google Scholar
Sattarahmady, N., Heli, H. & Moradi, S. E. Cobalt hexacyanoferrate/graphene nanocomposite application for the electrocatalytic oxidation and amperometric determination of Captopril. Sens. Actuators B Chem. 177, 1098–1106 (2013).
Google Scholar
Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007).
Google Scholar
Shan, C. et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem. 81, 2378–2382 (2009).
Google Scholar
Li, T., Yang, M. & Li, H. Label-free electrochemical detection of cancer marker based on graphene-cobalt hexacyanoferrate nanocomposite. J. Electroanal. Chem. 655, 50–55 (2011).
Google Scholar
Itaya, K., Ataka, T. & Toshima, S. Spectroelectrochemistry and electrochemical Preparation method of Prussian blue modified electrodes. J. Am. Chem. Soc. 104, 4767–4772 (1982).
Google Scholar
Fayez, Y. M., Mahmoud, A. M., Morcos, M. N., Goda, Z. M. & Boltia, S. H. Stable Solid-State microfabricated potentiometric sensor based on Chitosan-Prussian blue nanocomposite film for amlodipine selective detection. J Electrochem. Soc (2021).
Kulesza, P. J. et al. Electrochemical charging, countercation accommodation, and spectrochemical identity of microcrystalline solid Cobalt hexacyanoferrate. J. Phys. Chem. B. 102, 1870–1876 (1998).
Google Scholar
Yang, M. et al. Carbon nanotube/cobalt hexacyanoferrate nanoparticle-biopolymer system for the fabrication of biosensors. Biosens. Bioelectron. 21, 1791–1797 (2006).
Google Scholar
Rebelo, T. S., Almeida, S. A., Guerreiro, J. R. L., Montenegro, M. C. B. & Sales, M. G. F. Trimethoprim-selective electrodes with molecularly imprinted polymers acting as ionophores and potentiometric transduction on graphite solid-contact. Microchem J. 98, 21–28. https://doi.org/10.1016/j.microc.2010.10.006 (2011).
Google Scholar
Cao, Y., Feng, T., Xu, J. & Xue, C. Recent advances of molecularly imprinted polymer-based sensors in the detection of food safety hazard factors. Biosens. Bioelectron. 141, 111447. https://doi.org/10.1016/j.bios.2019.111447 (2019).
Google Scholar
Yan, H. & Row, K. H. Characteristic and synthetic approach of molecularly imprinted polymer. Int. J. Mol. Sci. 7, 155–178. https://doi.org/10.3390/i7050155 (2006).
Google Scholar
Wei, Y., Tang, Q., Gong, C. & Lam, M. H. W. Review of the recent progress in photoresponsive molecularly imprinted polymers containing Azobenzene chromophores. Anal. Chim. Acta. 900, 10–20. https://doi.org/10.1016/j.aca.2015.10.022 (2015).
Google Scholar
Zhao, G. et al. Synthesis of molecularly imprinted polymer via emulsion polymerization for application in Solanesol separation. Appl. Sci. 10, 2868. https://doi.org/10.3390/app10082868 (2020).
Google Scholar
Soliman, S. S., Mahmoud, A. M., Elghobashy, M. R., Zaazaa, H. E. & Sedik, G. A. Point-of-care electrochemical sensor for selective determination of date rape drug ketamine based on core-shell molecularly imprinted polymer. Talanta 254, 124151. https://doi.org/10.1016/j.talanta.2022.124151 (2023).
Google Scholar
Wadie, M., Marzouk, H. M., Rezk, M. R., Abdel-Moety, E. M. & Tantawy, M. A sensing platform of molecular imprinted polymer-based polyaniline/carbon paste electrodes for simultaneous potentiometric determination of Alfuzosin and Solifenacin in binary co-formulation and spiked plasma. Anal. Chim. Acta. 1200, 339599. https://doi.org/10.1016/j.aca.2022.339599 (2022).
Google Scholar
Hassan, A. M., Kelani, K. M., Hegazy, M. A. & Tantawy, M. A. Molecular imprinted polymer-based potentiometric approach for the assay of the co-formulated Tetracycline hcl, metronidazole and bismuth subcitrate in capsules and spiked human plasma. Anal. Chim. Acta. 1278, 341707. https://doi.org/10.1016/j.aca.2023.341707 (2023).
Google Scholar
Wadie, M., Abdel-Moety, E. M., Rezk, M. R., Mahmoud, A. M. & Marzouk, H. M. Electro-polymerized poly-methyldopa as a novel synthetic mussel-inspired molecularly imprinted polymeric sensor for darifenacin: computational and experimental study. Appl. Mater. Today. 29, 101595. https://doi.org/10.1016/j.apmt.2022.101595 (2022).
Google Scholar
Saad, M. N. et al. Computationally guided fabrication of Chlorpyrifos electrochemical sensor based on molecularly imprinted polymer decorated with Au nanoparticles. Talanta Open, 100457 (2025).
Zhang, J., Wang, Y. & Lu, X. Molecular imprinting technology for sensing foodborne pathogenic bacteria. Anal. Bioanal Chem. 413, 4581–4598. https://doi.org/10.1007/s00216-020-03138-x (2021).
Google Scholar
Holm, K. J. & Spencer, C. M. Bupropion: a review of its use in the management of smoking cessation. Drugs 59, 1007–1024. https://doi.org/10.2165/00003495-200059040-00019 (2000).
Google Scholar
Lobmaier, P. P., Kunøe, N., Gossop, M. & Waal, H. Naltrexone depot formulations for opioid and alcohol dependence: a systematic review. CNS Neurosci. Ther. 17, 629–636. https://doi.org/10.1111/j.1755-5949.2010.00194.x (2011).
Google Scholar
Rueda-Clausen, C. F., Padwal, R. S. & Sharma, A. M. New Pharmacological approaches for obesity management. Nat. Rev. Endocrinol. 9, 467–478. https://doi.org/10.1038/nrendo.2013.113 (2013).
Google Scholar
Ch, P. R., Chaitanya, D. & Prasanthi, B. RP-HPLC and spectrophotometric methods for the simultaneous Estimation of bupropion HCl and Naltrexone HCl. Int. J. Pharm. Sci. 6 (7), 2982–2990. https://doi.org/10.13040/IJPSR.0975-8232.6 (2015).
Google Scholar
Srikalyani, V., Tejaswi, M., Srividya, P. & Nalluri, B. N. Simultaneous analysis of Naltrexone hydrochloride and bupropion hydrochloride in bulk and dosage forms by RP-HPLC-PDA method. J. Chem. Pharm. 5, 429–435 (2013).
Haritha, A., Kumar, P. B. R., Priya, R. V. & Sekhar, K. Analytical method development and validation for simultaneus Estimation of Naltrexone hydrochloride and bupropion hydrochloride in oral dosage form (tablets) by RP-HPLC techniques. J. Global Trends Pharmaceut Sci. 6, 2600–2606 (2015).
Google Scholar
Trivedi, A., Dixit, N. & Jhade, D. Modified high performance liquid chromatography analysis for bupropion and Naltrexone in bulk and tablets by using green mobilephase. Res. J. Pharm. Technol. 10, 3317–3322 (2017).
Abdel-Gawad, S. A. & El-Gamal, R. M. Simultaneous determination of Naltrexone and bupropion in their co-formulated tablet utilizing green chromatographic approach with application to human urine. Saudi Pharm. J. 26, 169–176. https://doi.org/10.1016/j.jsps.2017.12.014 (2018).
Google Scholar
Moaaz, E. M., Abdel-Moety, E. M., Rezk, M. R. & Fayed, A. S. An eco-friendly smartphone based HPTLC method versus conventional densitometric one for determination of Naltrexone and bupropion. BMC Chem. 18, 185. https://doi.org/10.1186/s13065-024-01285-1 (2024).
Google Scholar
PATEL, P. & MASTER, S. Development and validation of first order derivative UV spectrophotometric method for simultaneous Estimation of bupropion and Naltrexone in combination. J. Pharm. Res. 26, 1341–1345 (2014).
Ramnadh, B. & Vikas, C. Simultaneous Estimation of Naltrexone and bupropion in pharmaceutical dosage form by using UV spectroscopy. World J. Biology Pharm. Health Sci. 1, 033–041. https://doi.org/10.30574/wjbphs.2020.1.1.0005 (2020).
Google Scholar
Ganjali, M., Mizani, F. & Norouzi, P. MWCNTs based carbon paste and PVC membrane potentiometric electrodes for monitoring of bupropion hydrochloride. Int. J. Electrochem. Sci. 7, 7631–7642. https://doi.org/10.1016/S1452-3981(23)15811-1 (2012).
Google Scholar
Saini, R., Doi, S., Jhankal, K. & Sharma, D. Adsorptive stripping voltammetric determination of bupropion in pharmaceuticals. Chem. Sci. Trans. 6, 330–338, doi:http://doi.10.7598/cst1371 (2017). (2017).
Jafari, S., Dehghani, M., Nasirizadeh, N., Azimzadeh, M. & Banadaki, F. D. Electrochemical detection of bupropion drug using nanocomposite of molecularly imprinted polyaniline/au nanoparticles/graphene oxide. Bull. Mater. Sci. 44, 56. https://doi.org/10.1007/s12034-020-02348-4 (2021).
Google Scholar
Madej, M. et al. Electrochemical sensing platform based on screen-printed carbon electrode modified with plasma polymerized acrylonitrile nanofilms for determination of bupropion. Microchim Acta. 190, 391. https://doi.org/10.1007/s00604-023-05971-0 (2023).
Google Scholar
Algmaal, S. E., Mahmoud, A. M., Boltia, S. A., El-Saharty, Y. S. & Ghoniem, N. S. Eco-friendly bupropion detection sensor with co-formulated dextromethorphan in AUVELITY tablet and spiked plasma. Sci. Rep. 14, 29305. https://doi.org/10.1038/s41598-024-80227-2 (2024).
Google Scholar
Pena-Pereira, F., Wojnowski, W. & Tobiszewski, M. AGREE—Analytical greenness metric approach and software. Anal. Chem. 92, 10076–10082 (2020).
Google Scholar
Nowak, P. M., Wietecha-Posłuszny, R. & Pawliszyn, J. White analytical chemistry: an approach to reconcile the principles of green analytical chemistry and functionality. Trends Analyt Chem. 138, 116223. https://doi.org/10.1016/j.trac.2021.116223 (2021).
Google Scholar
Mansour, F. R., Płotka-Wasylka, J., Locatelli, M. & Modified GAPI (MoGAPI) tool and software for the assessment of method greenness: case studies and applications. Analytica 5, 451–457. https://doi.org/10.3390/analytica5030030 (2024).
Google Scholar
Mahony, J., Nolan, K., Smyth, M. & Mizaikoff, B. Molecularly imprinted polymers—potential and challenges in analytical chemistry. Anal. Chim. Acta. 534, 31–39. https://doi.org/10.1016/j.aca.2004.07.043 (2005).
Google Scholar
Ramnadh, B. & Vikas, C. Simultaneous estimation of naltrexone and bupropion in pharmaceutical dosage form by using UV spectroscopy. WJBPHS 1, 033–041, (2020). https://doi.org/10.30574/wjbphs.2020.1.1.0005
Knox, C. et al. CM, DrugBank 6.0: the DrugBank knowledgebase Nucleic Acids Res. 5;52(D1):D1265-D1275., doi: http://doi.10.1093/nar/gkad976 (2024).
Wishart, D. S. et al. DrugBank: a comprehensive resource for in Silico drug discovery and exploration. Nucleic Acids Res. 34, D668–D672 (2006).
Google Scholar
Moaaz, E. M., Fayed, A. S., Rezk, M. R. & Abdel-Moety, E. M. Differential pulse voltammetric method for determination of Acemetacin in pharmaceutical formulation using glassy carbon electrode. Anal Bioanal Electrochem (2021).
Gemene, K. L., Shvarev, A. & Bakker, E. Selectivity enhancement of anion-responsive electrodes by pulsed chronopotentiometry. Anal. Chim. Acta. 583, 190–196. https://doi.org/10.1016/j.aca.2006.09.042 (2007).
Google Scholar
Alenazi, N. A., Manthorpe, J. M. & Lai, E. P. Selectivity enhancement in molecularly imprinted polymers for binding of bisphenol A. Sensors 16, 1697. https://doi.org/10.3390/s16101697 (2016).
Google Scholar
Arvand, M. & Samie, H. A. A biomimetic potentiometric sensor based on molecularly imprinted polymer for the determination of memantine in tablets. Drug Test. Anal. 5, 461–467. https://doi.org/10.1002/dta.371 (2013).
Google Scholar
Mahmoud, A. M., El-Ragehy, N. A., Hegazy, M. A., Tawfik, S. A. & Sedik, G. A. Electrochemical sensor doped with core-shell structured molecularly imprinted polymer proposed for therapeutic drug monitoring of Trazodone hydrochloride. Talanta Open. 11, 100406. https://doi.org/10.1016/j.talo.2025.100406 (2025).
Google Scholar
Moaaz, E. M., Fayed, A. S., Abdel-Moety, E. M. & Rezk, M. R. Innovative sensors with selectivity enhancement by molecularly imprinted polymers for the concurrent quantification of donepezil and memantine. RSC Adv. 15, 18475–18489. https://doi.org/10.1039/d5ra02850g (2025).
Google Scholar
Thommes, M. et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical Report). Pure Appl. Chem. 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117 (2015).
Google Scholar
Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319. https://doi.org/10.1021/ja01269a023 (1938).
Google Scholar
Olivier, J. P. Modeling physical adsorption on porous and nonporous solids using density functional theory. J. Porous Mater. 2, 9–17. https://doi.org/10.1007/BF00486565 (1995).
Google Scholar
Dorkó, Z., Szakolczai, A., Verbić, T. & Horvai, G. Binding capacity of molecularly imprinted polymers and their nonimprinted analogs. J. Sep. Sci. 38, 4240–4247. https://doi.org/10.1002/jssc.201500874 (2015).
Google Scholar
Mousavi, M. P., Abd El-Rahman, M. K., Mahmoud, A. M., Abdelsalam, R. M. & Bühlmann, P. In situ sensing of the neurotransmitter acetylcholine in a dynamic range of 1 nM to 1 mM. ACS Sens. 3, 2581–2589. https://doi.org/10.1021/acssensors.8b00950 (2018).
Google Scholar
Buck, R. P. & Lindner, E. Recommendations for nomenclature of ionselective electrodes (IUPAC recommendations 1994). Pure Appl. Chem. 66, 2527–2536 (1994).
Google Scholar
Lindner, E. & Umezawa, Y. Performance evaluation criteria for Preparation and measurement of macro-and microfabricated ion-selective electrodes (IUPAC technical Report). Pure Appl. Chem. 80, 85–104. https://doi.org/10.1351/pac200880010085 (2008).
Google Scholar
Elghobashy, M. R. & Rezk, M. R. Comparative study of different ionophores in ion selective electrodes for stability indicating determination of Moxifloxacin. Anal. Bioanal Electrochem. 6, 461–474 (2014).
Hussein, O. G. et al. Potentiometric ion-selective electrode for the determination of antazoline in different formulations and biological fluids using biomimetic receptors. Curr Anal. Chem (2025).
Moaaz, E. M., Abdel-Moety, E. M., Rezk, M. R. & Fayed, A. S. Eco-friendly chromatographic methods for determination of Acemetacin and indomethacin; greenness profile assessment. J. AOAC Int. 104, 1485–1491. https://doi.org/10.1093/jaoacint/qsab085 (2021).
Google Scholar
Moaaz, E. M., Abdel-Moety, E. M., Rezk, M. R. & Fayed, A. S. Smartphone based TLC approach versus conventional densitometric measurement for the simultaneous determination of donepezil and memantine, content uniformity testing along with greenness and whiteness assessment. Sustain. Chem. Pharm. 42, 101789. https://doi.org/10.1016/j.scp.2024.101789 (2024).
Google Scholar
Moaaz, E. M., Fayed, A. S., Abdel-Moety, E. M. & Rezk, M. R. Molecularly-imprinted polymer-based electrochemical sensor for indirect determination of memantine: greenness and whiteness assessment. J. Electrochem. Soc. 172 https://doi.org/10.1149/1945-7111/adad49 (2025).
Mouhamed, A. A., Nadim, A. H., Mostafa, N. M. & Eltanany, B. M. Application of smart chemometric models for spectra resolution and determination of challenging multi-action quaternary mixture: statistical comparison with greenness assessment. BMC Chem. 18, 44 (2024).
Google Scholar