Evolutionary drivers of divergent collateral sensitivity responses during antibiotic therapy

  • Naghavi, M. et al. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet 404, 1199–1226 (2024).

    Google Scholar 

  • Coates, A. R. M., Halls, G. & Hu, Y. Novel classes of antibiotics or more of the same? Br. J. Pharmacol. 163, 184–194 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Neill, J. et al. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations (Review on Antimicrobial Resistance, 2016).

  • Taylor, J. et al. Estimating the Economic Costs of Antimicrobial Resistance: Model and Results (RAND, 2014).

  • Lázár, V. et al. Bacterial evolution of antibiotic hypersensitivity. Mol. Syst. Biol. 9, 700 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Imamovic, L. & Sommer, M. O. A. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci. Transl. Med. 5, 204ra132 (2013).

    PubMed 

    Google Scholar 

  • Szybalski, W. & Bryson, V. Genetic studies on microbial cross resistance to toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics. J. Bacteriol. 64, 489–499 (1952).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Imamovic, L. et al. Drug-driven phenotypic convergence supports rational treatment strategies of chronic infections. Cell 172, 121–134.e14 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barbosa, C., Römhild, R., Rosenstiel, P. & Schulenburg, H. Evolutionary stability of collateral sensitivity to antibiotics in the model pathogen Pseudomonas aeruginosa. eLife 8, e51481 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, S., Lieberman, T. D. & Kishony, R. Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Proc. Natl Acad. Sci. USA 111, 14494–14499 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodriguez de Evgrafov, M., Gumpert, H., Munck, C., Thomsen, T. T. & Sommer, M. O. A. Collateral resistance and sensitivity modulate evolution of high-level resistance to drug combination treatment in Staphylococcus aureus. Mol. Biol. Evol. 32, 1175–1185 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Perron, G. G., Gonzalez, A. & Buckling, A. Source–sink dynamics shape the evolution of antibiotic resistance and its pleiotropic fitness cost. Proc. R. Soc. B 274, 2351–2356 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Roemhild, R., Barbosa, C., Beardmore, R. E., Jansen, G. & Schulenburg, H. Temporal variation in antibiotic environments slows down resistance evolution in pathogenic Pseudomonas aeruginosa. Evol. Appl. 8, 945–955 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Angst, D. C., Tepekule, B., Sun, L., Bogos, B. & Bonhoeffer, S. Comparing treatment strategies to reduce antibiotic resistance in an in vitro epidemiological setting. Proc. Natl Acad. Sci. USA 118, e2023467118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jahn, L. J. et al. Compatibility of evolutionary responses to constituent antibiotics drive resistance evolution to drug pairs. Mol. Biol. Evol. 38, 2057–2069 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pena-Miller, R. et al. When the most potent combination of antibiotics selects for the greatest bacterial load: the smile–frown transition. PLoS Biol. 11, e1001540 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hegreness, M., Shoresh, N., Damian, D., Hartl, D. & Kishony, R. Accelerated evolution of resistance in multidrug environments. Proc. Natl Acad. Sci. USA 105, 13977–13981 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Michel, J.-B., Yeh, P. J., Chait, R., Moellering, R. C. & Kishony, R. Drug interactions modulate the potential for evolution of resistance. Proc. Natl Acad. Sci. USA 105, 14918–14923 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Torella, J. P., Chait, R. & Kishony, R. Optimal drug synergy in antimicrobial treatments. PLoS Comput. Biol. 6, e1000796 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bognár, B., Spohn, R. & Lázár, V. Drug combinations targeting antibiotic resistance. NPJ Antimicrob. Resist. 2, 29 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Roemhild, R. & Schulenburg, H. Evolutionary ecology meets the antibiotic crisis: can we control pathogen adaptation through sequential therapy? Evol. Med. Public Health 2019, 37–45 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, D.-H. & Zhang, Q.-G. Fast drug rotation reduces bacterial resistance evolution in a microcosm experiment. J. Evol. Biol. 36, 641–649 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Batra, A. et al. High potency of sequential therapy with only β-lactam antibiotics. eLife 10, e68876 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Duijn, P. J. et al. The effects of antibiotic cycling and mixing on antibiotic resistance in intensive care units: a cluster-randomised crossover trial. Lancet Infect. Dis. 18, 401–409 (2018).

    PubMed 

    Google Scholar 

  • Munck, C., Gumpert, H. K., Wallin, A. I. N., Wang, H. H. & Sommer, M. O. A. Prediction of resistance development against drug combinations by collateral responses to component drugs. Sci. Transl. Med. 6, ra156 (2014).

    Google Scholar 

  • Barbosa, C., Beardmore, R., Schulenburg, H. & Jansen, G. Antibiotic combination efficacy (ACE) networks for a Pseudomonas aeruginosa model. PLoS Biol. 16, e2004356 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gonzales, P. R. et al. Synergistic, collaterally sensitive β-lactam combinations suppress resistance in MRSA. Nat. Chem. Biol. 11, 855–861 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yoshida, M. et al. Time-programmable drug dosing allows the manipulation, suppression and reversal of antibiotic drug resistance in vitro. Nat. Commun. 8, 15589 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lozano-Huntelman, N. A. et al. Evolution of antibiotic cross-resistance and collateral sensitivity in Staphylococcus epidermidis using the mutant prevention concentration and the mutant selection window. Evol. Appl. 13, 808–823 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Podnecky, N. L. et al. Conserved collateral antibiotic susceptibility networks in diverse clinical strains of Escherichia coli. Nat. Commun. 9, 3673 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Aulin, L. B. S., Liakopoulos, A., van der Graaf, P. H., Rozen, D. E. & van Hasselt, J. G. C. Design principles of collateral sensitivity-based dosing strategies. Nat. Commun. 12, 5691 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yen, P. & Papin, J. A. History of antibiotic adaptation influences microbial evolutionary dynamics during subsequent treatment. PLoS Biol. 15, e2001586 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Santos-Lopez, A. et al. The roles of history, chance, and natural selection in the evolution of antibiotic resistance. eLife 10, e70676 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beckley, A. M. & Wright, E. S. Identification of antibiotic pairs that evade concurrent resistance via a retrospective analysis of antimicrobial susceptibility test results. Lancet Microbe 2, e545–e554 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lázár, V. et al. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nat. Commun. 5, 4352 (2014).

    PubMed 

    Google Scholar 

  • Barbosa, C. et al. Alternative evolutionary paths to bacterial antibiotic resistance cause distinct collateral effects. Mol. Biol. Evol. 34, 2229–2244 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sakenova, N. et al. Systematic mapping of antibiotic cross-resistance and collateral sensitivity with chemical genetics. Nat. Microbiol. 10, 202–216 (2025).

    CAS 
    PubMed 

    Google Scholar 

  • Roemhild, R. & Andersson, D. I. Mechanisms and therapeutic potential of collateral sensitivity to antibiotics. PLoS Pathog. 17, e1009172 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oz, T. et al. Strength of selection pressure is an important parameter contributing to the complexity of antibiotic resistance evolution. Mol. Biol. Evol. 31, 2387–2401 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nichol, D. et al. Antibiotic collateral sensitivity is contingent on the repeatability of evolution. Nat. Commun. 10, 334 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liakopoulos, A. et al. Allele-specific collateral and fitness effects determine the dynamics of fluoroquinolone resistance evolution. Proc. Natl Acad. Sci. USA 119, e2121768119 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ardell, S. M. & Kryazhimskiy, S. The population genetics of collateral resistance and sensitivity. eLife 10, e73250 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maltas, J. & Wood, K. B. Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic resistance. PLoS Biol. 17, e3000515 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Apjok, G. et al. Limited evolutionary conservation of the phenotypic effects of antibiotic resistance mutations. Mol. Biol. Evol. 36, 1601–1611 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hernando-Amado, S., Sanz-García, F. & Martínez, J. L. Antibiotic resistance evolution is contingent on the quorum-sensing response in Pseudomonas aeruginosa. Mol. Biol. Evol. 36, 2238–2251 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Lukačišinová, M., Fernando, B. & Bollenbach, T. Highly parallel lab evolution reveals that epistasis can curb the evolution of antibiotic resistance. Nat. Commun. 11, 3105 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Melnyk, A. H., Wong, A. & Kassen, R. The fitness costs of antibiotic resistance mutations. Evol. Appl. 8, 273–283 (2015).

    PubMed 

    Google Scholar 

  • Hernando-Amado, S., Sanz-García, F. & Martínez, J. L. Rapid and robust evolution of collateral sensitivity in Pseudomonas aeruginosa antibiotic-resistant mutants. Sci. Adv. 6, eaba5493 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hernando-Amado, S., Laborda, P., Valverde, J. R. & Martínez, J. L. Mutational background influences P. aeruginosa ciprofloxacin resistance evolution but preserves collateral sensitivity robustness. Proc. Natl Acad. Sci. USA 119, e2109370119 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Allen, R. C., Pfrunder-Cardozo, K. R. & Hall, A. R. Collateral sensitivity interactions between antibiotics depend on local abiotic conditions. mSystems 6, e0105521 (2021).

    PubMed 

    Google Scholar 

  • Santos-Lopez, A., Marshall, C. W., Scribner, M. R., Snyder, D. J. & Cooper, V. S. Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle. eLife 8, e47612 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brepoels, P. et al. Antibiotic cycling affects resistance evolution independently of collateral sensitivity. Mol. Biol. Evol. 39, msac257 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Card, K. J., LaBar, T., Gomez, J. B. & Lenski, R. E. Historical contingency in the evolution of antibiotic resistance after decades of relaxed selection. PLoS Biol. 17, e3000397 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knöppel, A., Näsvall, J. & Andersson, D. I. Evolution of antibiotic resistance without antibiotic exposure. Antimicrob. Agents Chemother. 61, e01495–17 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Card, K. J., Thomas, M. D., Graves, J. L., Barrick, J. E. & Lenski, R. E. Genomic evolution of antibiotic resistance is contingent on genetic background following a long-term experiment with Escherichia coli. Proc. Natl Acad. Sci. USA 118, e2016886118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vogwill, T., Kojadinovic, M. & MacLean, R. C. Epistasis between antibiotic resistance mutations and genetic background shape the fitness effect of resistance across species of Pseudomonas. Proc. R. Soc. B 283, 20160151 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Porse, A., Jahn, L. J., Ellabaan, M. M. H. & Sommer, M. O. A. Dominant resistance and negative epistasis can limit the co-selection of de novo resistance mutations and antibiotic resistance genes. Nat. Commun. 11, 1199 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trindade, S. et al. Positive epistasis drives the acquisition of multidrug resistance. PLoS Genet. 5, e1000578 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jochumsen, N. et al. The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions. Nat. Commun. 7, 13002 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gifford, D. et al. Identifying and exploiting genes that potentiate the evolution of antibiotic resistance. Nat. Ecol. Evol. 2, 1033–1039 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Weinreich, D. M., Delaney, N. F., Depristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Zwep, L. B. et al. Identification of antibiotic collateral sensitivity and resistance interactions in population surveillance data. JAC Antimicrob. Resist. 3, dlab175 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jansen, G. et al. Association between clinical antibiotic resistance and susceptibility of Pseudomonas in the cystic fibrosis lung. Evol. Med. Public Health 2016, 182–194 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vanderwoude, J., Azimi, S., Read, T. D. & Diggle, S. P. The role of hypermutation and collateral sensitivity in antimicrobial resistance diversity of Pseudomonas aeruginosa populations in cystic fibrosis lung infection. mBio 15, e0310923 (2024).

    PubMed 

    Google Scholar 

  • Lagator, M., Uecker, H. & Neve, P. Adaptation at different points along antibiotic concentration gradients. Biol. Lett. 17, 20200913 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wistrand-Yuen, E. et al. Evolution of high-level resistance during low-level antibiotic exposure. Nat. Commun. 9, 1599 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sanz-García, F., Sánchez, M. B., Hernando-Amado, S. & Martínez, J. L. Evolutionary landscapes of Pseudomonas aeruginosa towards ribosome-targeting antibiotic resistance depend on selection strength. Int. J. Antimicrob. Agents 55, 105965 (2020).

    PubMed 

    Google Scholar 

  • Hermsen, R., Deris, J. B. & Hwa, T. On the rapidity of antibiotic resistance evolution facilitated by a concentration gradient. Proc. Natl Acad. Sci. USA 109, 10775–10780 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tseng, B. S. et al. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ. Microbiol. 15, 2865–2878 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jahn, L. J., Munck, C., Ellabaan, M. M. H. & Sommer, M. O. A. Adaptive laboratory evolution of antibiotic resistance using different selection regimes lead to similar phenotypes and genotypes. Front. Microbiol. 8, 816 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lindsey, H. A., Gallie, J., Taylor, S. & Kerr, B. Evolutionary rescue from extinction is contingent on a lower rate of environmental change. Nature 494, 463–467 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Cisneros-Mayoral, S., Graña-Miraglia, L., Pérez-Morales, D., Peña-Miller, R. & Fuentes-Hernández, A. Evolutionary history and strength of selection determine the rate of antibiotic resistance adaptation. Mol. Biol. Evol. 39, msac185 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maltas, J., Huynh, A. & Wood, K. B. Dynamic collateral sensitivity profiles highlight opportunities and challenges for optimizing antibiotic treatments. PLoS Biol. 23, e3002970 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Laborda, P., Martínez, J. L. & Hernando-Amado, S. Evolution of habitat-dependent antibiotic resistance in Pseudomonas aeruginosa. Microbiol. Spectr. 10, e0024722 (2022).

    PubMed 

    Google Scholar 

  • Delhaye, A., Collet, J.-F. & Laloux, G. Fine-tuning of the Cpx envelope stress response is required for cell wall homeostasis in Escherichia coli. mBio 7, e00047-16 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Flemming, H.-C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Steenackers, H., Hermans, K., Vanderleyden, J. & De Keersmaecker, S. C. J. Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Res. Int. 45, 502–531 (2012).

    CAS 

    Google Scholar 

  • Steenackers, H. P., Parijs, I., Foster, K. R. & Vanderleyden, J. Experimental evolution in biofilm populations. FEMS Microbiol. Rev. 40, 373–397 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crabbé, A., Jensen, P. Ø., Bjarnsholt, T. & Coenye, T. Antimicrobial tolerance and metabolic adaptations in microbial biofilms. Trends Microbiol. 27, 850–863 (2019).

    PubMed 

    Google Scholar 

  • Trampari, E. et al. Exposure of Salmonella biofilms to antibiotic concentrations rapidly selects resistance with collateral tradeoffs. NPJ Biofilms Microbiomes 7, 3 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ahmed, M. N., Porse, A., Sommer, M. O. A., Høiby, N. & Ciofu, O. Evolution of antibiotic resistance in biofilm and planktonic Pseudomonas aeruginosa populations exposed to subinhibitory levels of ciprofloxacin. Antimicrob. Agents Chemother. 62, e00320–18 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ahmed, M. N. et al. The evolutionary trajectories of P. aeruginosa in biofilm and planktonic growth modes exposed to ciprofloxacin: beyond selection of antibiotic resistance. NPJ Biofilms Microbiomes 6, 28 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scribner, M. R., Santos-Lopez, A., Marshall, C. W., Deitrick, C. & Cooper, V. S. Parallel evolution of tobramycin resistance across species and environments. mBio 11, e00932-20 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Anderson, A., Kinahan, M. W., Gonzalez, A. H., Udekwu, K. & Hernandez-Vargas, E. A. Invariant set theory for predicting potential failure of antibiotic cycling. Infect. Dis. Model. 10, 897–908 (2025).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nyhoegen, C. & Uecker, H. Sequential antibiotic therapy in the laboratory and in the patient. J. R. Soc. Interface 20, 20220793 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Udekwu, K. I. & Weiss, H. Pharmacodynamic considerations of collateral sensitivity in design of antibiotic treatment regimen. Drug Des. Dev. Ther. 12, 2249–2257 (2018).

    CAS 

    Google Scholar 

  • Nichol, D. et al. Steering evolution with sequential therapy to prevent the emergence of bacterial antibiotic resistance. PLoS Comput. Biol. 11, e1004493 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiao, Y. J., Baym, M., Veres, A. & Kishony, R. Population diversity jeopardizes the efficacy of antibiotic cycling. Preprint at bioRxiv https://doi.org/10.1101/082107 (2016).

  • Laborda, P., Martínez, J. L. & Hernando‐Amado, S. Convergent phenotypic evolution towards fosfomycin collateral sensitivity of Pseudomonas aeruginosa antibiotic‐resistant mutants. Microb. Biotechnol. 15, 613–629 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hernando-Amado, S. et al. Rapid phenotypic convergence towards collateral sensitivity in clinical isolates of Pseudomonas aeruginosa presenting different genomic backgrounds. Microbiol. Spectr. 0, e02276–22 (2022).

    Google Scholar 

  • Hernando-Amado, S., Laborda, P. & Martínez, J. L. Tackling antibiotic resistance by inducing transient and robust collateral sensitivity. Nat. Commun. 14, 1723 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merker, M. et al. Evolutionary approaches to combat antibiotic resistance: opportunities and challenges for precision medicine. Front. Immunol. 11, 1938 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koch, G. et al. Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell 158, 1060–1071 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Svet, L. et al. Competitive interactions facilitate resistance development against antimicrobials. Appl. Environ. Microbiol. 89, e0115523 (2023).

    PubMed 

    Google Scholar 

  • De Wit, G., Svet, L., Lories, B. & Steenackers, H. P. Microbial interspecies interactions and their impact on the emergence and spread of antimicrobial resistance. Annu. Rev. Microbiol. 76, 179–192 (2022).

    PubMed 

    Google Scholar 

  • Schenk, M. F. et al. Population size mediates the contribution of high-rate and large-benefit mutations to parallel evolution. Nat. Ecol. Evol. 6, 439–447 (2022).

    PubMed 

    Google Scholar 

  • Lázár, V. et al. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nat. Microbiol. 3, 718–731 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Goedseels, M. & Michiels, C. W. Cell envelope modifications generating resistance to hop beta acids and collateral sensitivity to cationic antimicrobials in Listeria monocytogenes. Microorganisms 11, 2024 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dawan, J., Liao, X., Ding, T. & Ahn, J. Phenotypic and genotypic responses of foodborne pathogens to sublethal concentrations of lactic acid and sodium chloride. Microb. Drug Resist. 30, 332–340 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Maltas, J., Krasnick, B. & Wood, K. B. Using selection by nonantibiotic stressors to sensitize bacteria to antibiotics. Mol. Biol. Evol. 37, 1394–1406 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Acton, L. et al. Collateral sensitivity increases the efficacy of a rationally designed bacteriophage combination to control Salmonella enterica. J. Virol. 98, e0147623 (2024).

    PubMed 

    Google Scholar 

  • Hasan, M., Dawan, J. & Ahn, J. Assessment of the potential of phage–antibiotic synergy to induce collateral sensitivity in Salmonella Typhimurium. Microb. Pathog. 180, 106134 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Qin, K. et al. Phage–antibiotic synergy suppresses resistance emergence of Klebsiella pneumoniae by altering the evolutionary fitness. mBio 15, e0139324 (2024).

    PubMed 

    Google Scholar 

  • Mu, Y. et al. Leveraging collateral sensitivity to counteract the evolution of bacteriophage resistance in bacteria. mLife 4, 143–154 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carolus, H. et al. Collateral sensitivity counteracts the evolution of antifungal drug resistance in Candida auris. Nat. Microbiol. 9, 2954–2969 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Pluchino, K. M., Hall, M. D., Goldsborough, A. S., Callaghan, R. & Gottesman, M. M. Collateral sensitivity as a strategy against cancer multidrug resistance. Drug Resist. Updat. 15, 98–105 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Danisik, N., Yilmaz, K. C. & Acar, A. Identification of collateral sensitivity and evolutionary landscape of chemotherapy-induced drug resistance using cellular barcoding technology. Front. Pharmacol. 14, 1178489 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, B. et al. Exploiting temporal collateral sensitivity in tumor clonal evolution. Cell 165, 234–246 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mandt, R. E. K. et al. Diverse evolutionary pathways challenge the use of collateral sensitivity as a strategy to suppress resistance. eLife 12, e85023 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hsu, H.-C. et al. Structures revealing mechanisms of resistance and collateral sensitivity of Plasmodium falciparum to proteasome inhibitors. Nat. Commun. 14, 8302 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ross, L. S. et al. Identification of collateral sensitivity to dihydroorotate dehydrogenase inhibitors in Plasmodium falciparum. ACS Infect. Dis. 4, 508–515 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Linkevicius, M., Anderssen, J. M., Sandegren, L. & Andersson, D. I. Fitness of Escherichia coli mutants with reduced susceptibility to tigecycline. J. Antimicrob. Chemother. 71, 1307–1313 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nicoloff, H. & Andersson, D. I. Lon protease inactivation, or translocation of the lon gene, potentiate bacterial evolution to antibiotic resistance. Mol. Microbiol. 90, 1233–1248 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Roemhild, R., Linkevicius, M. & Andersson, D. I. Molecular mechanisms of collateral sensitivity to the antibiotic nitrofurantoin. PLoS Biol. 18, e3000612 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading