Above the threshold, beyond the trip: the role of the 5-HT2A receptor in psychedelic-induced neuroplasticity and antidepressant effects

  • Sessa B. Shaping the renaissance of psychedelic research. The Lancet. 2012;380:200–1.

    Google Scholar 

  • Nichols DE. Psychedelics. Pharmacol Rev. 2016;68:264–355.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis AK, Barrett FS, May DG, Cosimano MP, Sepeda ND, Johnson MW, et al. Effects of psilocybin-assisted therapy on major depressive disorder: a randomized clinical trial. JAMA Psychiatry. 2021;78:481–9.

    PubMed 

    Google Scholar 

  • Goodwin GM, Croal M, Feifel D, Kelly JR, Marwood L, Mistry S, et al. Psilocybin for treatment resistant depression in patients taking a concomitant SSRI medication. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2023;48:1492–9.

    CAS 

    Google Scholar 

  • Results Posted | A Double-Blind Trial of Psilocybin-Assisted Treatment of Alcohol Dependence | ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT02061293. Accessed 15 July 2024.

  • Study Details | LSD Treatment for Persons With Alcohol Use Disorder | ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT05474989. Accessed 15 July 2024.

  • Study Details | Psilocybin-Assisted Psychotherapy in Adults With Alcohol Use Disorder (AUD) | ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT05646303. Accessed 15 July 2024.

  • Study Details | Psilocybin as a Treatment for Anorexia Nervosa: A Pilot Study | ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT04505189. Accessed 15 July 2024.

  • Study Details | Evaluation of Psilocybin in Anorexia Nervosa: Safety and Efficacy | ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT04661514. Accessed 15 July 2024.

  • Study Details | Psilocybin in Co-occuring Major Depressive Disorder and Borderline Personality Disorder | ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT05399498. Accessed 15 July 2024.

  • Study Details | The Safety and Tolerability of COMP360 in Participants With Post-traumatic Stress Disorder | ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT05312151. Accessed 15 July 2024.

  • Study Details | Phase 2 Clinical Trial of GH001 in Bipolar II Disorder | ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT05839509. Accessed 15 July 2024.

  • Study Details | Outpatient Buprenorphine Induction With Psilocybin for Opioid Use Disorder | ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT06067737. Accessed 15 July 2024.

  • Study Details | Psilocybin-facilitated Smoking Cessation Treatment: A Pilot Study | ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT01943994. Accessed 15 July 2024.

  • Study Details | A Phase 2, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of up to Two Doses of Psilocybin for the Treatment of Major Depressive Disorder in Adults With Cancer | ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT05947383. Accessed 15 July 2024.

  • Results Posted | Psychopharmacology of Psilocybin in Cancer Patients | ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT00465595. Accessed 15 July 2024.

  • Olson DE. Psychoplastogens: a promising class of plasticity-promoting neurotherapeutics. J Exp Neurosci. 2018;12:1179069518800508.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Drevets WC, Ongür D, Price JL. Neuroimaging abnormalities in the subgenual prefrontal cortex: implications for the pathophysiology of familial mood disorders. Mol Psychiatry. 1998;3:220–6.

    CAS 
    PubMed 

    Google Scholar 

  • Drevets WC. Neuroimaging studies of mood disorders. Biol Psychiatry. 2000;48:813–29.

    CAS 
    PubMed 

    Google Scholar 

  • Cui L, Li S, Wang S, Wu X, Liu Y, Yu W, et al. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther. 2024;9:1–32.

    CAS 

    Google Scholar 

  • Molendijk ML, Bus BAA, Spinhoven P, Penninx BWJH, Kenis G, Prickaerts J, et al. Serum levels of brain-derived neurotrophic factor in major depressive disorder: state–trait issues, clinical features and pharmacological treatment. Mol Psychiatry. 2011;16:1088–95.

    CAS 
    PubMed 

    Google Scholar 

  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000;20:9104–10.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olson DE. The Subjective effects of psychedelics may not be necessary for their enduring therapeutic effects. ACS Pharmacol Transl Sci. 2021;4:563–7.

    CAS 
    PubMed 

    Google Scholar 

  • Yaden DB, Griffiths RR. The subjective effects of psychedelics are necessary for their enduring therapeutic effects. ACS Pharmacol Transl Sci. 2021;4:568–72.

    CAS 
    PubMed 

    Google Scholar 

  • Lewis V, Bonniwell EM, Lanham JK, Ghaffari A, Sheshbaradaran H, Cao AB, et al. A non-hallucinogenic LSD analog with therapeutic potential for mood disorders. Cell Rep. 2023;42:112203.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cameron LP, Tombari RJ, Lu J, Pell AJ, Hurley ZQ, Ehinger Y, et al. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature. 2021;589:474–9.

    CAS 
    PubMed 

    Google Scholar 

  • Cao D, Yu J, Wang H, Luo Z, Liu X, He L, et al. Structure-based discovery of nonhallucinogenic psychedelic analogs. Science. 2022;375:403–11.

    CAS 
    PubMed 

    Google Scholar 

  • Shahar O, Botvinnik A, Esh-Zuntz N, Brownstien M, Wolf R, Lotan A, et al. Role of 5-HT2A, 5-HT2C, 5-HT1A and TAAR1 Receptors in the Head Twitch Response Induced by 5-Hydroxytryptophan and Psilocybin: Translational Implications. Int J Mol Sci. 2022;23:14148.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cameron LP, Patel SD, Vargas MV, Barragan EV, Saeger HN, Warren HT, et al. 5-HT2ARs mediate therapeutic behavioral effects of psychedelic tryptamines. ACS Chem Neurosci. 2023;14:351–8.

    CAS 
    PubMed 

    Google Scholar 

  • Desouza LA, Benekareddy M, Fanibunda SE, Mohammad F, Janakiraman B, Ghai U, et al. The hallucinogenic Serotonin2A receptor agonist, 2,5-Dimethoxy-4-Iodoamphetamine, promotes cAMP response element binding protein-dependent gene expression of specific plasticity-associated genes in the rodent neocortex. Front Mol Neurosci. 2021;14:790213.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shao L-X, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K, et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron. 2021;109:2535–2544.e4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ly C, Greb AC, Cameron LP, Wong JM, Barragan EV, Wilson PC, et al. Psychedelics promote structural and functional neural plasticity. Cell Rep. 2018;23:3170–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Revenga M, de la F, Zhu B, Guevara CA, Naler LB, Saunders JM, Zhou Z, et al. Prolonged epigenomic and synaptic plasticity alterations following single exposure to a psychedelic in mice. Cell Rep. 2021;37:109836.

    PubMed Central 

    Google Scholar 

  • Vaidya VA, Marek GJ, Aghajanian GK, Duman RS. 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J Neurosci. 1997;17:2785–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vargas MV, Dunlap LE, Dong C, Carter SJ, Tombari RJ, Jami SA, et al. Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors. Science. 2023. 17 February 2023. https://doi.org/10.1126/science.adf0435.

  • Hesselgrave N, Troppoli TA, Wulff AB, Cole AB, Thompson SM. Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proc Natl Acad Sci. 2021;118:e2022489118.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moliner R, Girych M, Brunello CA, Kovaleva V, Biojone C, Enkavi G, et al. Psychedelics promote plasticity by directly binding to BDNF receptor TrkB. Nat Neurosci. 2023;26:1032–41.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163:1905–17.

    PubMed 

    Google Scholar 

  • Stone MB, Yaseen ZS, Miller BJ, Richardville K, Kalaria SN, Kirsch I. Response to acute monotherapy for major depressive disorder in randomized, placebo controlled trials submitted to the US Food and Drug Administration: individual participant data analysis. BMJ. 2022;378:e067606.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fournier JC, DeRubeis RJ, Hollon SD, Dimidjian S, Amsterdam JD, Shelton RC, et al. Antidepressant drug effects and depression severity: a patient-level meta-analysis. JAMA. 2010;303:47–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lukas RJ, Muresan AZ, Damaj MI, Blough BE, Huang X, Navarro HA, et al. Synthesis and characterization of in vitro and in vivo profiles of hydroxybupropion analogues: aids to smoking cessation. J Med Chem. 2010;53:4731–48.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang H-Q, Wang Z-Z, Chen N-H. The receptor hypothesis and the pathogenesis of depression: Genetic bases and biological correlates. Pharmacol Res. 2021;167:105542.

    CAS 
    PubMed 

    Google Scholar 

  • Stahl SM. Stahl’s essential psychopharmacology: Neuroscientific basis and practical applications. 4th ed. New York, NY, US: Cambridge University Press; 2013.

    Google Scholar 

  • Undurraga J, Baldessarini RJ. Direct comparison of tricyclic and serotonin-reuptake inhibitor antidepressants in randomized head-to-head trials in acute major depression: Systematic review and meta-analysis. J Psychopharmacol (Oxf). 2017;31:1184–9.

    CAS 

    Google Scholar 

  • Haase J, Brown E. Integrating the monoamine, neurotrophin and cytokine hypotheses of depression — A central role for the serotonin transporter? Pharmacol Ther. 2015;147:1–11.

    CAS 
    PubMed 

    Google Scholar 

  • Oquendo MA, Placidi GPA, Malone KM, Campbell C, Keilp J, Brodsky B, et al. Positron emission tomography of regional brain metabolic responses to a serotonergic challenge and lethality of suicide attempts in major depression. Arch Gen Psychiatry. 2003;60:14–22.

    PubMed 

    Google Scholar 

  • Drevets WC, Videen TO, Price JL, Preskorn SH, Carmichael ST, Raichle ME. A functional anatomical study of unipolar depression. J Neurosci. 1992;12:3628–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu W, Ge T, Leng Y, Pan Z, Fan J, Yang W, et al. The role of neural plasticity in depression: from hippocampus to prefrontal cortex. Neural Plast. 2017;2017:6871089.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan SWY, Harmer CJ, Norbury R, O’Sullivan U, Goodwin GM, Portella MJ. Hippocampal volume in vulnerability and resilience to depression. J Affect Disord. 2016;189:199–202.

    PubMed 

    Google Scholar 

  • Bartkowska K, Paquin A, Gauthier AS, Kaplan DR, Miller FD. Trk signaling regulates neural precursor cell proliferation and differentiation during cortical development. Development. 2007;134:4369–80.

    CAS 
    PubMed 

    Google Scholar 

  • Minichiello L. TrkB signalling pathways in LTP and learning. Nat Rev Neurosci. 2009;10:850–60.

    CAS 
    PubMed 

    Google Scholar 

  • Bus BaA, Molendijk ML, Tendolkar I, Penninx BWJH, Prickaerts J, Elzinga BM, et al. Chronic depression is associated with a pronounced decrease in serum brain-derived neurotrophic factor over time. Mol Psychiatry. 2015;20:602–8.

    CAS 
    PubMed 

    Google Scholar 

  • Talaee N, Azadvar S, Khodadadi S, Abbasi N, Asli-Pashaki ZN, Mirabzadeh Y, et al. Comparing the effect of fluoxetine, escitalopram, and sertraline, on the level of BDNF and depression in preclinical and clinical studies: a systematic review. Eur J Clin Pharmacol. 2024;80:983–1016.

    PubMed 

    Google Scholar 

  • Madsen CA, Navarro ML, Elfving B, Kessing LV, Castrén E, Mikkelsen JD, et al. The effect of antidepressant treatment on blood BDNF levels in depressed patients: a review and methodological recommendations for assessment of BDNF in blood. Eur Neuropsychopharmacol. 2024;87:35–55.

    CAS 
    PubMed 

    Google Scholar 

  • Ray MT, Shannon Weickert C, Webster MJ. Decreased BDNF and TrkB mRNA expression in multiple cortical areas of patients with schizophrenia and mood disorders. Transl Psychiatry. 2014;4:e389.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rahmani F, Saghazadeh A, Rahmani M, Teixeira AL, Rezaei N, Aghamollaii V, et al. Plasma levels of brain-derived neurotrophic factor in patients with Parkinson disease: a systematic review and meta-analysis. Brain Res. 2019;1704:127–36.

    CAS 
    PubMed 

    Google Scholar 

  • Kim OY, Song J. The importance of BDNF and RAGE in diabetes-induced dementia. Pharmacol Res. 2020;160:105083.

    CAS 
    PubMed 

    Google Scholar 

  • Davarpanah M, Shokri-mashhadi N, Ziaei R, Saneei P. A systematic review and meta-analysis of association between brain-derived neurotrophic factor and type 2 diabetes and glycemic profile. Sci Rep. 2021;11:1–14.

    Google Scholar 

  • Nutt D, King LA, Saulsbury W, Blakemore C. Development of a rational scale to assess the harm of drugs of potential misuse. The Lancet. 2007;369:1047–53.

    Google Scholar 

  • Yanagita T. Intravenous self-administration of (−)-cathinone and 2-amino-1-(2,5-dimethoxy-4-methyl)phenylpropane in rhesus monkeys. Drug Alcohol Depend. 1986;17:135–41.

    CAS 
    PubMed 

    Google Scholar 

  • Deneau G, Yanagita T, Seevers MH. Self-administration of psychoactive substances by the monkey. Psychopharmacologia. 1969;16:30–48.

    CAS 
    PubMed 

    Google Scholar 

  • Becker AM, Klaiber A, Holze F, Istampoulouoglou I, Duthaler U, Varghese N, et al. Ketanserin reverses the acute response to LSD in a randomized, double-blind, placebo-controlled, crossover study in healthy participants. Int J Neuropsychopharmacol. 2023;26:97–106.

    CAS 
    PubMed 

    Google Scholar 

  • Kometer M, Schmidt A, Jäncke L, Vollenweider FX. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations. J Neurosci. 2013;33:10544–51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holze F, Vizeli P, Ley L, Müller F, Dolder P, Stocker M, et al. Acute dose-dependent effects of lysergic acid diethylamide in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology. 2021;46:537–44.

    CAS 
    PubMed 

    Google Scholar 

  • Valle M, Maqueda AE, Rabella M, Rodríguez-Pujadas A, Antonijoan RM, Romero S, et al. Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans. Eur Neuropsychopharmacol. 2016;26:1161–75.

    CAS 
    PubMed 

    Google Scholar 

  • Kometer M, Schmidt A, Bachmann R, Studerus E, Seifritz E, Vollenweider FX. Psilocybin biases facial recognition, goal-directed behavior, and mood state toward positive relative to negative emotions through different serotonergic subreceptors. Biol Psychiatry. 2012;72:898–906.

    CAS 
    PubMed 

    Google Scholar 

  • Vollenweider FX, Vollenweider-Scherpenhuyzen MFI, Bäbler A, Vogel H, Hell D. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. NeuroReport. 1998;9:3897.

    CAS 
    PubMed 

    Google Scholar 

  • Quednow BB, Kometer M, Geyer MA, Vollenweider FX. Psilocybin-Induced deficits in automatic and controlled inhibition are attenuated by ketanserin in healthy human volunteers. Neuropsychopharmacology. 2012;37:630–40.

    CAS 
    PubMed 

    Google Scholar 

  • Preller KH, Herdener M, Pokorny T, Planzer A, Kraehenmann R, Stämpfli P, et al. The fabric of meaning and subjective effects in LSD-Induced states depend on serotonin 2A receptor activation. Curr Biol. 2017;27:451–7.

    CAS 
    PubMed 

    Google Scholar 

  • Klaiber A, Schmid Y, Becker AM, Straumann I, Erne L, Jelusic A, et al. Acute dose-dependent effects of mescaline in a double-blind placebo-controlled study in healthy subjects. Transl Psychiatry. 2024;14:1–8.

    Google Scholar 

  • Holze F, Madsen MK, Svarer C, Gillings N, Stenbaek DS, Rudin D, et al. Ketanserin exhibits dose- and concentration-proportional serotonin 2A receptor occupancy in healthy individuals: relevance for psychedelic research. Eur Neuropsychopharmacol. 2024;88:43–48.

    CAS 
    PubMed 

    Google Scholar 

  • Casey AB, Cui M, Booth RG, Canal CE. “Selective” serotonin 5-HT2A receptor antagonists. Biochem Pharmacol. 2022;200:115028.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Madsen MK, Fisher PM, Burmester D, Dyssegaard A, Stenbæk DS, Kristiansen S, et al. Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology. 2019;44:1328–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Corne SJ, Pickering RW. A possible correlation between drug-induced hallucinations in man and a behavioural response in mice. Psychopharmacologia. 1967;11:65–78.

    CAS 
    PubMed 

    Google Scholar 

  • Halberstadt AL, Chatha M, Klein AK, Wallach J, Brandt SD. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology. 2020;167:107933.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fiorella D, Rabin RA, Winter JC. The role of the 5-HT2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs I: Antagonist correlation analysis. Psychopharmacology (Berl). 1995;121:347–56.

    CAS 
    PubMed 

    Google Scholar 

  • Halberstadt AL, Koedood L, Powell SB, Geyer MA. Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice. J Psychopharmacol (Oxf). 2011;25:1548–61.

    CAS 

    Google Scholar 

  • Canal CE, Olaghere da Silva UB, Gresch PJ, Watt EE, Sanders-Bush E, Airey DC. The serotonin 2C receptor potently modulates the head-twitch response in mice induced by a phenethylamine hallucinogen. Psychopharmacology (Berl). 2010;209:163–74.

    CAS 
    PubMed 

    Google Scholar 

  • Hutten NRPW, Mason NL, Dolder PC, Theunissen EL, Holze F, Liechti ME, et al. Low Doses of LSD Acutely Increase BDNF Blood Plasma Levels in Healthy Volunteers. ACS Pharmacol Transl Sci. 2021;4:461–6.

    CAS 
    PubMed 

    Google Scholar 

  • de Almeida RN, de Galvão ACM, da Silva FS, Silva EADS, Palhano-Fontes F, Maia-de-Oliveira JP, et al. Modulation of serum brain-derived neurotrophic factor by a single dose of ayahuasca: observation from a randomized controlled trial. Front Psychol. 2019;10:1234.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Becker AM, Holze F, Grandinetti T, Klaiber A, Toedtli VE, Kolaczynska KE, et al. Acute effects of psilocybin after escitalopram or placebo pretreatment in a randomized, double-blind, placebo-controlled, crossover study in healthy subjects. Clin Pharmacol Ther. 2022;111:886–95.

    CAS 
    PubMed 

    Google Scholar 

  • Holze F, Ley L, Müller F, Becker AM, Straumann I, Vizeli P, et al. Direct comparison of the acute effects of lysergic acid diethylamide and psilocybin in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology. 2022;47:1180–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holze F, Vizeli P, Müller F, Ley L, Duerig R, Varghese N, et al. Distinct acute effects of LSD, MDMA, and D-amphetamine in healthy subjects. Neuropsychopharmacology. 2020;45:462–71.

    CAS 
    PubMed 

    Google Scholar 

  • Rocha JM, Rossi GN, de Lima Osório F, Bouso JC, de Oliveira Silveira G, Yonamine M, et al. Effects of ayahuasca on the recognition of facial expressions of emotions in naive healthy volunteers: a pilot, proof-of-concept, randomized controlled trial. J Clin Psychopharmacol. 2021;41:267.

    PubMed 

    Google Scholar 

  • Vogt SB, Ley L, Erne L, Straumann I, Becker AM, Klaiber A, et al. Acute effects of intravenous DMT in a randomized placebo-controlled study in healthy participants. Transl Psychiatry. 2023;13:172.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shafiee A, Arabzadeh Bahri R, Rafiei MA, Esmaeilpur Abianeh F, Razmara P, Jafarabady K, et al. The effect of psychedelics on the level of brain-derived neurotrophic factor: a systematic review and meta-analysis. J Psychopharmacol (Oxf). 2024;38:425–31.

    Google Scholar 

  • Le Nedelec M, Glue P, Winter H, Goulton C, Broughton L, Medlicott N. Acute low-dose ketamine produces a rapid and robust increase in plasma BDNF without altering brain BDNF concentrations. Drug Deliv Transl Res. 2018;8:780–6.

    PubMed 

    Google Scholar 

  • Ly C, Greb AC, Vargas MV, Duim WC, Grodzki ACG, Lein PJ, et al. Transient stimulation with psychoplastogens is sufficient to initiate neuronal growth. ACS Pharmacol Transl Sci. 2021;4:452–60.

    CAS 
    PubMed 

    Google Scholar 

  • Raval NR, Johansen A, Donovan LL, Ros NF, Ozenne B, Hansen HD, et al. A Single dose of psilocybin increases synaptic density and decreases 5-HT2A receptor density in the pig brain. Int J Mol Sci. 2021;22:835.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao X, Du Y, Yao Y, Dai W, Yin Y, Wang G, et al. Psilocybin promotes neuroplasticity and induces rapid and sustained antidepressant-like effects in mice. J Psychopharmacol (Oxf). 2024;38:489–99.

    CAS 

    Google Scholar 

  • Calder AE, Hasler G. Towards an understanding of psychedelic-induced neuroplasticity. Neuropsychopharmacology. 2023;48:104–12.

    PubMed 

    Google Scholar 

  • Benekareddy M, Nair AR, Dias BG, Suri D, Autry AE, Monteggia LM, et al. Induction of the plasticity-Associated immediate early gene Arc by stress and hallucinogens: role of brain-derived neurotrophic factor. Int J Neuropsychopharmacol. 2013;16:405–15.

    CAS 
    PubMed 

    Google Scholar 

  • Ito H, Nyberg S, Halldin C, Lundkvist C, Farde L. PET imaging of central 5-HT2A receptors with carbon-11-MDL 100,907. J Nucl Med. 1998;39:208–14.

    CAS 
    PubMed 

    Google Scholar 

  • Beliveau V, Ganz M, Feng L, Ozenne B, Højgaard L, Fisher PM, et al. A High-Resolution in vivo atlas of the human brain’s serotonin system. J Neurosci. 2017;37:120–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pompeiano M, Palacios JM, Mengod G. Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Mol Brain Res. 1994;23:163–78.

    CAS 
    PubMed 

    Google Scholar 

  • Davoudian PA, Shao L-X, Kwan AC. Shared and distinct brain regions targeted for immediate early gene expression by ketamine and psilocybin. ACS Chem Neurosci. 2023;14:468–80.

    CAS 
    PubMed 

    Google Scholar 

  • Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, et al. Mechanisms of action and persistent neuroplasticity by drugs of abuse. Pharmacol Rev. 2015;67:872–1004.

    CAS 
    PubMed 

    Google Scholar 

  • Tuvikene J, Pruunsild P, Orav E, Esvald E-E, Timmusk T. AP-1 Transcription factors mediate BDNF-Positive feedback loop in cortical neurons. J Neurosci. 2016;36:1290–305.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • López-Giménez JF, González-Maeso J Hallucinogens and Serotonin 5-HT2A Receptor-Mediated Signaling Pathways. In: Halberstadt AL, Vollenweider FX, Nichols DE, editors. Behav. Neurobiol. Psychedelic Drugs, Berlin, Heidelberg: Springer; 2018. p. 45–73.

  • Rantamäki T. TrkB neurotrophin receptor at the core of antidepressant effects, but how? Cell Tissue Res. 2019;377:115–24.

    PubMed 

    Google Scholar 

  • Luttrell LM, Lefkowitz RJ. The role of β-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci. 2002;115:455–65.

    CAS 
    PubMed 

    Google Scholar 

  • Smith JS, Lefkowitz RJ, Rajagopal S. Biased signalling: from simple switches to allosteric microprocessors. Nat Rev Drug Discov. 2018;17:243–60.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim K, Che T, Panova O, DiBerto JF, Lyu J, Krumm BE, et al. Structure of a hallucinogen-activated Gq-Coupled 5-HT2A serotonin receptor. Cell. 2020;182:1574–1588.e19.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wallach J, Cao AB, Calkins MM, Heim AJ, Lanham JK, Bonniwell EM, et al. Identification of 5-HT2A receptor signaling pathways associated with psychedelic potential. Nat Commun. 2023;14:8221.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Glatfelter GC, Pottie E, Partilla JS, Stove CP, Baumann MH. Comparative pharmacological effects of lisuride and lysergic acid diethylamide revisited. ACS Pharmacol Transl Sci. 2024;7:641–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodriguiz RM, Nadkarni V, Means CR, Pogorelov VM, Chiu Y-T, Roth BL, et al. LSD-stimulated behaviors in mice require β-arrestin 2 but not β-arrestin 1. Sci Rep. 2021;11:1–14.

    Google Scholar 

  • Schmid CL, Raehal KM, Bohn LM. Agonist-directed signaling of the serotonin 2A receptor depends on β-arrestin-2 interactions in vivo. Proc Natl Acad Sci. 2008;105:1079–84.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmid CL, Bohn LM. Serotonin, but not N-Methyltryptamines, activates the serotonin 2A receptor via a β-Arrestin2/Src/Akt signaling complex in vivo. J Neurosci. 2010;30:13513–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith RL, Barrett RJ, Sanders-Bush E. Neurochemical and behavioral evidence that quipazine-ketanserin discrimination is mediated by serotonin2A receptor. J Pharmacol Exp Ther. 1995;275:1050–7.

    CAS 
    PubMed 

    Google Scholar 

  • Kaplan AL, Confair DN, Kim K, Barros-Álvarez X, Rodriguiz RM, Yang Y, et al. Bespoke library docking for 5-HT2A receptor agonists with antidepressant activity. Nature. 2022;610:582–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marek GJ, Martin-Ruiz R, Abo A, Artigas F. The selective 5-HT2A receptor antagonist M100907 enhances antidepressant-like behavioral effects of the SSRI fluoxetine. Neuropsychopharmacology. 2005;30:2205–15.

    CAS 
    PubMed 

    Google Scholar 

  • Liu J-L, Li M, Dang X-R, Wang Z-H, Rao Z-R, Wu S-X, et al. A NMDA receptor antagonist, MK-801 impairs consolidating extinction of auditory conditioned fear responses in a pavlovian model. PLOS ONE. 2009;4:e7548.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dalton GL, Wu DC, Wang YT, Floresco SB, Phillips AG. NMDA GluN2A and GluN2B receptors play separate roles in the induction of LTP and LTD in the amygdala and in the acquisition and extinction of conditioned fear. Post-Trauma Stress Disord. 2012;62:797–806.

    CAS 

    Google Scholar 

  • Planchez B, Surget A, Belzung C. Animal models of major depression: drawbacks and challenges. J Neural Transm. 2019;126:1383–408.

    CAS 
    PubMed 

    Google Scholar 

  • Belovicova K, Bogi E, Csatlosova K, Dubovicky M. Animal tests for anxiety-like and depression-like behavior in rats. Interdiscip Toxicol. 2017;10:40–43.

    PubMed 

    Google Scholar 

  • Hendrie C, Pickles A. The failure of the antidepressant drug discovery process is systemic. J Psychopharmacol (Oxf). 2013;27:407–16.

    Google Scholar 

  • Pehrson AL, Roberts D, Khawaja A, McNair R. The role of serotonin neurotransmission in rapid antidepressant actions. Psychopharmacology (Berl). 2022;239:1823–38.

    CAS 
    PubMed 

    Google Scholar 

  • Béïque J-C, Imad M, Mladenovic L, Gingrich JA, Andrade R. Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci USA. 2007;104:9870–5.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Andrade R. Serotonergic regulation of neuronal excitability in the prefrontal cortex. Neuropharmacology. 2011;61:382–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muschamp JW, Regina MJ, Hull EM, Winter JC, Rabin RA. Lysergic acid diethylamide and [−]-2,5-dimethoxy-4-methylamphetamine increase extracellular glutamate in rat prefrontal cortex. Brain Res. 2004;1023:134–40.

    CAS 
    PubMed 

    Google Scholar 

  • Vollenweider FX, Preller KH. Psychedelic drugs: neurobiology and potential for treatment of psychiatric disorders. Nat Rev Neurosci. 2020;21:611–24.

    CAS 
    PubMed 

    Google Scholar 

  • Aghajanian GK, Marek GJ. Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res. 1999;825:161–71.

    CAS 
    PubMed 

    Google Scholar 

  • Baki L, Fribourg M, Younkin J, Eltit JM, Moreno JL, Park G, et al. Cross-signaling in metabotropic glutamate 2 and serotonin 2A receptor heteromers in mammalian cells. Pflüg Arch – Eur J Physiol. 2016;468:775–93.

    CAS 

    Google Scholar 

  • Fribourg M, Moreno JL, Holloway T, Provasi D, Baki L, Mahajan R, et al. Decoding the Signaling of a GPCR Heteromeric Complex Reveals a Unifying Mechanism of Action of Antipsychotic Drugs. Cell. 2011;147:1011–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moreno JL, Miranda-Azpiazu P, García-Bea A, Younkin J, Cui M, Kozlenkov A, et al. Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia. Sci Signal. 2016;9:ra5–ra5.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Olivero G, Grilli M, Vergassola M, Bonfiglio T, Padolecchia C, Garrone B, et al. 5-HT2A-mGlu2/3 receptor complex in rat spinal cord glutamatergic nerve endings: A 5-HT2A to mGlu2/3 signalling to amplify presynaptic mechanism of auto-control of glutamate exocytosis. Neuropharmacology. 2018;133:429–39.

    CAS 
    PubMed 

    Google Scholar 

  • Saha S, González-Maeso J. The crosstalk between 5-HT2AR and mGluR2 in schizophrenia. Neuropharmacology. 2023;230:109489.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saha S, Gonzalez-Maeso J Translation-independent association of mRNAs encoding protomers of the 5-HT2A-mGlu2 receptor complex in living cells. 2024:2024.06.17.599432.

  • Taddeucci A, Olivero G, Roggeri A, Milanese C, Giorgio FPD, Grilli M, et al. Presynaptic 5-HT2A-mGlu2/3 receptor–receptor crosstalk in the prefrontal cortex: metamodulation of glutamate exocytosis. Cells. 2022;11:3035.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jakab RL, Goldman-Rakic PS. 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: Possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci. 1998;95:735–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miner LAH, Backstrom JR, Sanders-Bush E, Sesack SR. Ultrastructural localization of serotonin2A receptors in the middle layers of the rat prelimbic prefrontal cortex. Neuroscience. 2003;116:107–17.

    CAS 
    PubMed 

    Google Scholar 

  • Gewirtz JC, Chen AC, Terwilliger R, Duman RC, Marek GJ. Modulation of DOI-induced increases in cortical BDNF expression by group II mGlu receptors. Pharmacol Biochem Behav. 2002;73:317–26.

    CAS 
    PubMed 

    Google Scholar 

  • Gewirtz JC, Marek GJ. behavioral evidence for interactions between a hallucinogenic drug and group II metabotropic glutamate receptors. Neuropsychopharmacology. 2000;23:569–76.

    CAS 
    PubMed 

    Google Scholar 

  • Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell. 2021;184:1299–1313.e19.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading