Jia, W. et al. Xiaochaihutang improves the cortical astrocyte edema in thioacetamide-induced rat acute hepatic encephalopathy by activating NRF2 pathway. Front. Pharmacol. 11, 382 (2020).
Google Scholar
Ferenci, P. et al. Hepatic encephalopathy—definition, nomenclature, diagnosis, and quantification: Final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology 35(3), 716–721 (2002).
Google Scholar
Bustamante, J. et al. Mitochondrial dysfunction as a mediator of hippocampal apoptosis in a model of hepatic encephalopathy. Mol. Cell. Biochem. 354(1), 231–240 (2011).
Google Scholar
Jover, R. et al. Brain edema and inflammatory activation in bile duct ligated rats with diet-induced hyperammonemia: A model of hepatic encephalopathy in cirrhosis. Hepatology 43(6), 1257–1266 (2006).
Google Scholar
Hajipour, S. et al. Thymoquinone improves behavioral and biochemical deficits in hepatic encephalopathy induced by thioacetamide in rats. Neurosci. Lett. 745, 135617 (2021).
Google Scholar
Baraka, S. M. et al. Flavonoids from Barnebydendron riedelii leaf extract mitigate thioacetamide-induced hepatic encephalopathy in rats: The interplay of NF-κB/IL-6 and Nrf2/HO-1 signaling pathways. Bioorg. Chem. 105, 104444 (2020).
Google Scholar
Parekh, P. J. & Balart, L. A. Ammonia and its role in the pathogenesis of hepatic encephalopathy. Clin. Liver Dis. 19(3), 529–537 (2015).
Google Scholar
El-Baz, F. K., Elgohary, R. & Salama, A. Amelioration of hepatic encephalopathy using Dunaliella salina microalgae in rats: Modulation of Hyperammonemia/TLR4. BioMed Res. Int. 2021(1), 8843218 (2021).
Google Scholar
Kwon, K. W. et al. Hepatoprotective effect of sodium hydrosulfide on hepatic encephalopathy in rats. Korean J. Physiol. Pharmacol. 23(4), 263–270 (2019).
Google Scholar
Afifi, N. A. et al. Synergistic effect of aminoguanidine and l-carnosine against thioacetamide-induced hepatic encephalopathy in rats: Behavioral, biochemical, and ultrastructural evidence. Can. J. Physiol. Pharmacol. 99(3), 332–347 (2021).
Google Scholar
Chen, B. et al. The critical role of hippocampal dopamine in the pathogenesis of hepatic encephalopathy. Physiol. Res. 70(1), 101 (2021).
Google Scholar
Braissant, O. et al. Longitudinal neurometabolic changes in the hippocampus of a rat model of chronic hepatic encephalopathy. J. Hepatol. 71(3), 505–515 (2019).
Google Scholar
Wu, K.-C. et al. Effect of sirolimus on liver cirrhosis and hepatic encephalopathy of common bile duct-ligated rats. Eur. J. Pharmacol. 824, 133–139 (2018).
Google Scholar
Dadsetan, S. et al. Infliximab reduces peripheral inflammation, neuroinflammation, and extracellular GABA in the cerebellum and improves learning and motor coordination in rats with hepatic encephalopathy. J. Neuroinflammation 13, 1–14 (2016).
Jäger, S., Handschin, C., Pierre, J. S. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl. Acad. Sci. 104(29), 12017–12022 (2007).
Google Scholar
Ramamurthy, S. & Ronnett, G. V. Developing a head for energy sensing: AMP-activated protein kinase as a multifunctional metabolic sensor in the brain. J. Physiol. 574(1), 85–93 (2006).
Google Scholar
Salt, I. P., Johnson, G., Ashcroft, S. J. & Hardie, D. G. AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic β cells, and may regulate insulin release. Biochem. J. 335(3), 533–539 (1998).
Google Scholar
Liu, Y.-J. & Chern, Y. AMPK-mediated regulation of neuronal metabolism and function in brain diseases. J. Neurogenet. 29(2–3), 50–58 (2015).
Google Scholar
Schousboe, A., Waagepetersen, H. S., Leke, R. & Bak, L. K. Effects of hyperammonemia on brain energy metabolism: Controversial findings in vivo and in vitro. Metab. Brain Dis. 29(4), 913–917 (2014).
Google Scholar
Vucicevic, L. et al. Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway. Autophagy 7(1), 40–50 (2011).
Google Scholar
Huang, D.-W., Chang, W.-C., Wu, J.S.-B., Shih, R.-W. & Shen, S.-C. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet. Nutr. Res. 36(2), 150–160 (2016).
Google Scholar
John, J. A. & Shahidi, F. Phenolic compounds and antioxidant activity of Brazil nut (Bertholletia excelsa). J. Funct. Foods 2(3), 196–209 (2010).
Abdelwahed, A. et al. Study of antimutagenic and antioxidant activities of Gallic acid and 1, 2, 3, 4, 6-pentagalloylglucose from Pistacia lentiscus: Confirmation by microarray expression profiling. Chem. Biol. Interact. 165(1), 1–13 (2007).
Google Scholar
BenSaad, L. A., Kim, K. H., Quah, C. C., Kim, W. R. & Shahimi, M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. BMC Complement. Altern. Med. 17(1), 1–10 (2017).
Doan, K. V. et al. Gallic acid regulates body weight and glucose homeostasis through AMPK activation. Endocrinology 156(1), 157–168 (2015).
Google Scholar
Tanaka, M. et al. Gallic acid inhibits lipid accumulation via AMPK pathway and suppresses apoptosis and macrophage-mediated inflammation in hepatocytes. Nutrients 12(5), 1479 (2020).
Google Scholar
Jafaripour, L. et al. The effect of gallic acid on memory and anxiety-like behaviors in rats with bile duct ligation-induced hepatic encephalopathy: Role of AMPK pathway. Avicenna J. Phytomed. 12(4), 425 (2022).
Google Scholar
Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. The ARRIVE guidelines animal research: Reporting in vivo experiments. PLoS Biol. 8(6), e1000412 (2010).
Google Scholar
Alimohamadi, Y. & Sepandi, M. Sample size in animal studies (The number of laboratory animals in a Research study). Iran. J. Med. Microbiol. 16(2), 173–176 (2022).
Sen, A. et al. Effects of Myrtus communis extract treatment in bile duct ligated rats. J. Surg. Res. 205(2), 359–367 (2016).
Google Scholar
Gandhi, G. R. et al. Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway. Eur. J. Pharmacol. 745, 201–216 (2014).
Google Scholar
Kim, M. J. et al. Gallic acid, a histone acetyltransferase inhibitor, suppresses β-amyloid neurotoxicity by inhibiting microglial-mediated neuroinflammation. Mol. Nutr. Food Res. 55(12), 1798–1808 (2011).
Google Scholar
Park, S., Kim, D. S., Kang, S. & Shin, B. K. Chronic activation of central AMPK attenuates glucose-stimulated insulin secretion and exacerbates hepatic insulin resistance in diabetic rats. Brain Res. Bull. 108, 18–26 (2014).
Google Scholar
Zarei, M., Mohammadi, S., Jabbari, S. & Shahidi, S. Intracerebroventricular microinjection of kaempferol on memory retention of passive avoidance learning in rats: Involvement of cholinergic mechanism (s). Int. J. Neurosci. 129(12), 1203–1212 (2019).
Google Scholar
Dhanda, S., Gupta, S., Halder, A., Sunkaria, A. & Sandhir, R. Systemic inflammation without gliosis mediates cognitive deficits through impaired BDNF expression in bile duct ligation model of hepatic encephalopathy. Brain Behav. Immun. 70, 214–232 (2018).
Google Scholar
Kruger, N. The Bradford method for protein quantitation (Humana Press, Totowa, 1994).
Ahmadvand, H., Bagheri, S., Khosrobeigi, A. & Boshtam, M. Effects of olive leaves extract on LDL oxidation induced-CUSO 4 in vitro. Pak. J. Pharm. Sci. 25(3), 571–575 (2012).
Google Scholar
Gries, A. et al. Inhaled nitric oxide inhibits human platelet aggregation, P-selectin expression, and fibrinogen binding in vitro and in vivo. Circulation 97(15), 1481–1487 (1998).
Google Scholar
Dadpisheh, S., Ahmadvand, H., Jafaripour, L., Shati, H. & Bagheri, S. Effect of troxerutin on oxidative stress induced by sciatic nerve ischemia-reperfusion injury in rats. J. Kerman Univ. Med. Sci. 27, 338–347 (2020).
Khalatbary, A. R. & Ahmadvand, H. Effect of oleuropein on tissue myeloperoxidase activity in experimental spinal cord trauma. Iran. Biomed. J. 15(4), 164 (2011).
Google Scholar
Rahman, I., Kode, A. & Biswas, S. K. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc. 1(6), 3159–3165 (2006).
Google Scholar
DeVore, V. & Greene, B. Glutathione peroxidase in post-rigor bovine Semitendinosus muscle. J. Food Sci. 47(5), 1406–1409 (1982).
Aebi, H. Catalase in vitro. Methods Enzymol 105, 121–126 (1984).
Google Scholar
Pfaffl, M. W., Horgan, G. W. & Dempfle, L. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30(9), e36 (2002).
Google Scholar
Golshani, M., Basiri, M., Shabani, M., Aghaei, I. & Asadi-Shekaari, M. Effects of erythropoietin on bile duct ligation-induced neuro-inflammation in male rats. AIMS Neurosci. 6(2), 43 (2019).
Google Scholar
Dhanda, S., Sunkaria, A., Halder, A. & Sandhir, R. Mitochondrial dysfunctions contribute to energy deficits in rodent model of hepatic encephalopathy. Metab. Brain Dis. 33(1), 209–223 (2018).
Google Scholar
Cheon, S. Y., Jo, D., Kim, Y.-K. & Song, J. Long noncoding RNAs regulate hyperammonemia-induced neuronal damage in hepatic encephalopathy. Oxid. Med. Cell. Longev. 1, 7628522 (2022).
Hu, T. et al. Quercetin ameliorates diabetic encephalopathy through SIRT1/ER stress pathway in db/db mice. Aging (Albany NY) 12(8), 7015 (2020).
Google Scholar
Ochoa-Sanchez, R. & Rose, C. F. Pathogenesis of hepatic encephalopathy in chronic liver disease. J. Clin. Exp. Hepatol. 8(3), 262–271 (2018).
Google Scholar
Pierzchala, K. et al. Central nervous system and systemic oxidative stress interplay with inflammation in a bile duct ligation rat model of type C hepatic encephalopathy. Free Radical Biol. Med. 178, 295–307 (2022).
Lu, B. et al. Babao Dan improves neurocognitive function by inhibiting inflammation in clinical minimal hepatic encephalopathy. Biomed. Pharmacother. 135, 111084 (2021).
Google Scholar
Shirwany, N. A. & Zou, M.-H. AMPK in cardiovascular health and disease. Acta Pharmacol. Sin. 31(9), 1075–1084 (2010).
Google Scholar
Li Z, Miao Z, Ding L, Bao J, Teng X. Ammonia-induced energy metabolism disorder and autophagy via AMPK/mTOR/ULK1 pathway in chicken livers (2020).
Wang, D. et al. Stimulation of Wnt/β-catenin signaling to improve bone development by naringin via interacting with AMPK and Akt. Cell. Physiol. Biochem. 36(4), 1563–1576 (2015).
Google Scholar
Rashtiani, S., Goudarzi, I., Jafari, A. & Rohampour, K. Adenosine monophosphate activated protein kinase (AMPK) is essential for the memory improving effect of adiponectin. Neurosci. Lett. 749, 135721 (2021).
Google Scholar
Shi, X. et al. Sestrin2, as a negative feedback regulator of mTOR, provides neuroprotection by activation AMPK phosphorylation in neonatal hypoxic-ischemic encephalopathy in rat pups. J. Cereb. Blood Flow Metab. 37(4), 1447–1460 (2017).
Google Scholar
Tanaka, Y., Obinata, H., Konishi, A., Yamagiwa, N. & Tsuneoka, M. Production of ROS by gallic acid activates KDM2A to reduce rRNA transcription. Cells 9(10), 2266 (2020).
Google Scholar
Diaz, A. et al. Gallic acid improves recognition memory and decreases oxidative-inflammatory damage in the rat hippocampus with metabolic syndrome. Synapse 75(2), e22186 (2021).
Reshma, K., Ashalatha, V. R., Dinesh, M. & Vasudevan, D. Effect of ocimum flavonoids as a radioprotector on the erythrocyte antioxidants in oral cancer. Indian J. Clin. Biochem. 20, 160–164 (2005).
Google Scholar
Rashidi, M. et al. Effects of vitamin E and zinc supplementation on antioxidants in beta thalassemia major patients. Iran. J. Pediatr. 21(1), 8 (2011).
Google Scholar
Bai, J. et al. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother. 133, 110985 (2021).
Google Scholar
Altındağ, F. & Meydan, İ. Evaluation of protective effects of gallic acid on cisplatin-induced testicular and epididymal damage. Andrologia 53(10), e14189 (2021).
Google Scholar
Hasanvand, A. et al. Anti-inflammatory effect of AMPK signaling pathway in rat model of diabetic neuropathy. Inflammopharmacology 24(5), 207–219 (2016).
Google Scholar
MirshekariJahangiri, H., Sarkaki, A., Farbood, Y., Dianat, M. & Goudarzi, G. Gallic acid affects blood-brain barrier permeability, behaviors, hippocampus local EEG, and brain oxidative stress in ischemic rats exposed to dusty particulate matter. Environ. Sci. Pollut. Res. 27(5), 5281–5292 (2020).
Ghanaatgar-Kasbi, S. et al. AMP-kinase inhibitor dorsomorphin reduces the proliferation and migration behavior of colorectal cancer cells by targeting the AKT/mTOR pathway. IUBMB Life 71(12), 1929–1936 (2019).
Google Scholar
Le, D. D. T. et al. Inhibitory role of AMP-activated protein kinase in necroptosis of HCT116 colon cancer cells with p53 null mutation under nutrient starvation. Int. J. Oncol. 54(2), 702–712 (2019).
Google Scholar
Kosuru, R. et al. AMPK contributes to cardioprotective effects of pterostilbene against myocardial ischemia-reperfusion injury in diabetic rats by suppressing cardiac oxidative stress and apoptosis. Cell. Physiol. Biochem. 46(4), 1381–1397 (2018).
Google Scholar