Gallic acid alleviates hippocampus and cerebellum injuries in a rat model of hepatic encephalopathy

  • Jia, W. et al. Xiaochaihutang improves the cortical astrocyte edema in thioacetamide-induced rat acute hepatic encephalopathy by activating NRF2 pathway. Front. Pharmacol. 11, 382 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferenci, P. et al. Hepatic encephalopathy—definition, nomenclature, diagnosis, and quantification: Final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology 35(3), 716–721 (2002).

    PubMed 

    Google Scholar 

  • Bustamante, J. et al. Mitochondrial dysfunction as a mediator of hippocampal apoptosis in a model of hepatic encephalopathy. Mol. Cell. Biochem. 354(1), 231–240 (2011).

    PubMed 

    Google Scholar 

  • Jover, R. et al. Brain edema and inflammatory activation in bile duct ligated rats with diet-induced hyperammonemia: A model of hepatic encephalopathy in cirrhosis. Hepatology 43(6), 1257–1266 (2006).

    PubMed 

    Google Scholar 

  • Hajipour, S. et al. Thymoquinone improves behavioral and biochemical deficits in hepatic encephalopathy induced by thioacetamide in rats. Neurosci. Lett. 745, 135617 (2021).

    PubMed 

    Google Scholar 

  • Baraka, S. M. et al. Flavonoids from Barnebydendron riedelii leaf extract mitigate thioacetamide-induced hepatic encephalopathy in rats: The interplay of NF-κB/IL-6 and Nrf2/HO-1 signaling pathways. Bioorg. Chem. 105, 104444 (2020).

    PubMed 

    Google Scholar 

  • Parekh, P. J. & Balart, L. A. Ammonia and its role in the pathogenesis of hepatic encephalopathy. Clin. Liver Dis. 19(3), 529–537 (2015).

    PubMed 

    Google Scholar 

  • El-Baz, F. K., Elgohary, R. & Salama, A. Amelioration of hepatic encephalopathy using Dunaliella salina microalgae in rats: Modulation of Hyperammonemia/TLR4. BioMed Res. Int. 2021(1), 8843218 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kwon, K. W. et al. Hepatoprotective effect of sodium hydrosulfide on hepatic encephalopathy in rats. Korean J. Physiol. Pharmacol. 23(4), 263–270 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Afifi, N. A. et al. Synergistic effect of aminoguanidine and l-carnosine against thioacetamide-induced hepatic encephalopathy in rats: Behavioral, biochemical, and ultrastructural evidence. Can. J. Physiol. Pharmacol. 99(3), 332–347 (2021).

    PubMed 

    Google Scholar 

  • Chen, B. et al. The critical role of hippocampal dopamine in the pathogenesis of hepatic encephalopathy. Physiol. Res. 70(1), 101 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Braissant, O. et al. Longitudinal neurometabolic changes in the hippocampus of a rat model of chronic hepatic encephalopathy. J. Hepatol. 71(3), 505–515 (2019).

    PubMed 

    Google Scholar 

  • Wu, K.-C. et al. Effect of sirolimus on liver cirrhosis and hepatic encephalopathy of common bile duct-ligated rats. Eur. J. Pharmacol. 824, 133–139 (2018).

    PubMed 

    Google Scholar 

  • Dadsetan, S. et al. Infliximab reduces peripheral inflammation, neuroinflammation, and extracellular GABA in the cerebellum and improves learning and motor coordination in rats with hepatic encephalopathy. J. Neuroinflammation 13, 1–14 (2016).

    Google Scholar 

  • Jäger, S., Handschin, C., Pierre, J. S. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl. Acad. Sci. 104(29), 12017–12022 (2007).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramamurthy, S. & Ronnett, G. V. Developing a head for energy sensing: AMP-activated protein kinase as a multifunctional metabolic sensor in the brain. J. Physiol. 574(1), 85–93 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Salt, I. P., Johnson, G., Ashcroft, S. J. & Hardie, D. G. AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic β cells, and may regulate insulin release. Biochem. J. 335(3), 533–539 (1998).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y.-J. & Chern, Y. AMPK-mediated regulation of neuronal metabolism and function in brain diseases. J. Neurogenet. 29(2–3), 50–58 (2015).

    PubMed 

    Google Scholar 

  • Schousboe, A., Waagepetersen, H. S., Leke, R. & Bak, L. K. Effects of hyperammonemia on brain energy metabolism: Controversial findings in vivo and in vitro. Metab. Brain Dis. 29(4), 913–917 (2014).

    PubMed 

    Google Scholar 

  • Vucicevic, L. et al. Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway. Autophagy 7(1), 40–50 (2011).

    PubMed 

    Google Scholar 

  • Huang, D.-W., Chang, W.-C., Wu, J.S.-B., Shih, R.-W. & Shen, S.-C. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet. Nutr. Res. 36(2), 150–160 (2016).

    PubMed 

    Google Scholar 

  • John, J. A. & Shahidi, F. Phenolic compounds and antioxidant activity of Brazil nut (Bertholletia excelsa). J. Funct. Foods 2(3), 196–209 (2010).

    Google Scholar 

  • Abdelwahed, A. et al. Study of antimutagenic and antioxidant activities of Gallic acid and 1, 2, 3, 4, 6-pentagalloylglucose from Pistacia lentiscus: Confirmation by microarray expression profiling. Chem. Biol. Interact. 165(1), 1–13 (2007).

    PubMed 

    Google Scholar 

  • BenSaad, L. A., Kim, K. H., Quah, C. C., Kim, W. R. & Shahimi, M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. BMC Complement. Altern. Med. 17(1), 1–10 (2017).

    Google Scholar 

  • Doan, K. V. et al. Gallic acid regulates body weight and glucose homeostasis through AMPK activation. Endocrinology 156(1), 157–168 (2015).

    PubMed 

    Google Scholar 

  • Tanaka, M. et al. Gallic acid inhibits lipid accumulation via AMPK pathway and suppresses apoptosis and macrophage-mediated inflammation in hepatocytes. Nutrients 12(5), 1479 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jafaripour, L. et al. The effect of gallic acid on memory and anxiety-like behaviors in rats with bile duct ligation-induced hepatic encephalopathy: Role of AMPK pathway. Avicenna J. Phytomed. 12(4), 425 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. The ARRIVE guidelines animal research: Reporting in vivo experiments. PLoS Biol. 8(6), e1000412 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Alimohamadi, Y. & Sepandi, M. Sample size in animal studies (The number of laboratory animals in a Research study). Iran. J. Med. Microbiol. 16(2), 173–176 (2022).

    Google Scholar 

  • Sen, A. et al. Effects of Myrtus communis extract treatment in bile duct ligated rats. J. Surg. Res. 205(2), 359–367 (2016).

    PubMed 

    Google Scholar 

  • Gandhi, G. R. et al. Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway. Eur. J. Pharmacol. 745, 201–216 (2014).

    PubMed 

    Google Scholar 

  • Kim, M. J. et al. Gallic acid, a histone acetyltransferase inhibitor, suppresses β-amyloid neurotoxicity by inhibiting microglial-mediated neuroinflammation. Mol. Nutr. Food Res. 55(12), 1798–1808 (2011).

    PubMed 

    Google Scholar 

  • Park, S., Kim, D. S., Kang, S. & Shin, B. K. Chronic activation of central AMPK attenuates glucose-stimulated insulin secretion and exacerbates hepatic insulin resistance in diabetic rats. Brain Res. Bull. 108, 18–26 (2014).

    PubMed 

    Google Scholar 

  • Zarei, M., Mohammadi, S., Jabbari, S. & Shahidi, S. Intracerebroventricular microinjection of kaempferol on memory retention of passive avoidance learning in rats: Involvement of cholinergic mechanism (s). Int. J. Neurosci. 129(12), 1203–1212 (2019).

    PubMed 

    Google Scholar 

  • Dhanda, S., Gupta, S., Halder, A., Sunkaria, A. & Sandhir, R. Systemic inflammation without gliosis mediates cognitive deficits through impaired BDNF expression in bile duct ligation model of hepatic encephalopathy. Brain Behav. Immun. 70, 214–232 (2018).

    PubMed 

    Google Scholar 

  • Kruger, N. The Bradford method for protein quantitation (Humana Press, Totowa, 1994).

    Google Scholar 

  • Ahmadvand, H., Bagheri, S., Khosrobeigi, A. & Boshtam, M. Effects of olive leaves extract on LDL oxidation induced-CUSO 4 in vitro. Pak. J. Pharm. Sci. 25(3), 571–575 (2012).

    PubMed 

    Google Scholar 

  • Gries, A. et al. Inhaled nitric oxide inhibits human platelet aggregation, P-selectin expression, and fibrinogen binding in vitro and in vivo. Circulation 97(15), 1481–1487 (1998).

    PubMed 

    Google Scholar 

  • Dadpisheh, S., Ahmadvand, H., Jafaripour, L., Shati, H. & Bagheri, S. Effect of troxerutin on oxidative stress induced by sciatic nerve ischemia-reperfusion injury in rats. J. Kerman Univ. Med. Sci. 27, 338–347 (2020).

    Google Scholar 

  • Khalatbary, A. R. & Ahmadvand, H. Effect of oleuropein on tissue myeloperoxidase activity in experimental spinal cord trauma. Iran. Biomed. J. 15(4), 164 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rahman, I., Kode, A. & Biswas, S. K. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc. 1(6), 3159–3165 (2006).

    PubMed 

    Google Scholar 

  • DeVore, V. & Greene, B. Glutathione peroxidase in post-rigor bovine Semitendinosus muscle. J. Food Sci. 47(5), 1406–1409 (1982).

    Google Scholar 

  • Aebi, H. Catalase in vitro. Methods Enzymol 105, 121–126 (1984).

    PubMed 

    Google Scholar 

  • Pfaffl, M. W., Horgan, G. W. & Dempfle, L. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30(9), e36 (2002).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Golshani, M., Basiri, M., Shabani, M., Aghaei, I. & Asadi-Shekaari, M. Effects of erythropoietin on bile duct ligation-induced neuro-inflammation in male rats. AIMS Neurosci. 6(2), 43 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dhanda, S., Sunkaria, A., Halder, A. & Sandhir, R. Mitochondrial dysfunctions contribute to energy deficits in rodent model of hepatic encephalopathy. Metab. Brain Dis. 33(1), 209–223 (2018).

    PubMed 

    Google Scholar 

  • Cheon, S. Y., Jo, D., Kim, Y.-K. & Song, J. Long noncoding RNAs regulate hyperammonemia-induced neuronal damage in hepatic encephalopathy. Oxid. Med. Cell. Longev. 1, 7628522 (2022).

    Google Scholar 

  • Hu, T. et al. Quercetin ameliorates diabetic encephalopathy through SIRT1/ER stress pathway in db/db mice. Aging (Albany NY) 12(8), 7015 (2020).

    PubMed 

    Google Scholar 

  • Ochoa-Sanchez, R. & Rose, C. F. Pathogenesis of hepatic encephalopathy in chronic liver disease. J. Clin. Exp. Hepatol. 8(3), 262–271 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pierzchala, K. et al. Central nervous system and systemic oxidative stress interplay with inflammation in a bile duct ligation rat model of type C hepatic encephalopathy. Free Radical Biol. Med. 178, 295–307 (2022).

    Google Scholar 

  • Lu, B. et al. Babao Dan improves neurocognitive function by inhibiting inflammation in clinical minimal hepatic encephalopathy. Biomed. Pharmacother. 135, 111084 (2021).

    PubMed 

    Google Scholar 

  • Shirwany, N. A. & Zou, M.-H. AMPK in cardiovascular health and disease. Acta Pharmacol. Sin. 31(9), 1075–1084 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li Z, Miao Z, Ding L, Bao J, Teng X. Ammonia-induced energy metabolism disorder and autophagy via AMPK/mTOR/ULK1 pathway in chicken livers (2020).

  • Wang, D. et al. Stimulation of Wnt/β-catenin signaling to improve bone development by naringin via interacting with AMPK and Akt. Cell. Physiol. Biochem. 36(4), 1563–1576 (2015).

    PubMed 

    Google Scholar 

  • Rashtiani, S., Goudarzi, I., Jafari, A. & Rohampour, K. Adenosine monophosphate activated protein kinase (AMPK) is essential for the memory improving effect of adiponectin. Neurosci. Lett. 749, 135721 (2021).

    PubMed 

    Google Scholar 

  • Shi, X. et al. Sestrin2, as a negative feedback regulator of mTOR, provides neuroprotection by activation AMPK phosphorylation in neonatal hypoxic-ischemic encephalopathy in rat pups. J. Cereb. Blood Flow Metab. 37(4), 1447–1460 (2017).

    PubMed 

    Google Scholar 

  • Tanaka, Y., Obinata, H., Konishi, A., Yamagiwa, N. & Tsuneoka, M. Production of ROS by gallic acid activates KDM2A to reduce rRNA transcription. Cells 9(10), 2266 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Diaz, A. et al. Gallic acid improves recognition memory and decreases oxidative-inflammatory damage in the rat hippocampus with metabolic syndrome. Synapse 75(2), e22186 (2021).

    Google Scholar 

  • Reshma, K., Ashalatha, V. R., Dinesh, M. & Vasudevan, D. Effect of ocimum flavonoids as a radioprotector on the erythrocyte antioxidants in oral cancer. Indian J. Clin. Biochem. 20, 160–164 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rashidi, M. et al. Effects of vitamin E and zinc supplementation on antioxidants in beta thalassemia major patients. Iran. J. Pediatr. 21(1), 8 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bai, J. et al. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother. 133, 110985 (2021).

    PubMed 

    Google Scholar 

  • Altındağ, F. & Meydan, İ. Evaluation of protective effects of gallic acid on cisplatin-induced testicular and epididymal damage. Andrologia 53(10), e14189 (2021).

    PubMed 

    Google Scholar 

  • Hasanvand, A. et al. Anti-inflammatory effect of AMPK signaling pathway in rat model of diabetic neuropathy. Inflammopharmacology 24(5), 207–219 (2016).

    PubMed 

    Google Scholar 

  • MirshekariJahangiri, H., Sarkaki, A., Farbood, Y., Dianat, M. & Goudarzi, G. Gallic acid affects blood-brain barrier permeability, behaviors, hippocampus local EEG, and brain oxidative stress in ischemic rats exposed to dusty particulate matter. Environ. Sci. Pollut. Res. 27(5), 5281–5292 (2020).

    Google Scholar 

  • Ghanaatgar-Kasbi, S. et al. AMP-kinase inhibitor dorsomorphin reduces the proliferation and migration behavior of colorectal cancer cells by targeting the AKT/mTOR pathway. IUBMB Life 71(12), 1929–1936 (2019).

    PubMed 

    Google Scholar 

  • Le, D. D. T. et al. Inhibitory role of AMP-activated protein kinase in necroptosis of HCT116 colon cancer cells with p53 null mutation under nutrient starvation. Int. J. Oncol. 54(2), 702–712 (2019).

    PubMed 

    Google Scholar 

  • Kosuru, R. et al. AMPK contributes to cardioprotective effects of pterostilbene against myocardial ischemia-reperfusion injury in diabetic rats by suppressing cardiac oxidative stress and apoptosis. Cell. Physiol. Biochem. 46(4), 1381–1397 (2018).

    PubMed 

    Google Scholar 

  • Continue Reading