Foley, J. A. et al. Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 5, 25–32 (2007).
Gardner, T. A. et al. Prospects for tropical forest biodiversity in a human-modified world. Ecol. Lett. 12, 561–582 (2009).
Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).
Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).
Bourgoin, C. et al. Human degradation of tropical moist forests is greater than previously estimated. Nature https://doi.org/10.1038/s41586-024-07629-0 (2024).
Lapola, D. M. et al. The drivers and impacts of Amazon forest degradation. Science 379, eabp8622 (2023).
Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).
Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical Forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).
Costa, F. & Magnusson, W. Selective logging effects on abundance, diversity, and composition of tropical understory herbs. Ecol. Appl. 12, 807–819 (2002).
Feldpausch, T. R. et al. Nitrogen aboveground turnover and soil stocks to 8 m depth in primary and selectively logged forest in southern Amazonia. Glob. Change Biol. 16, 1793–1805 (2010).
Mollinari, M. M., Peres, C. A. & Edwards, D. P. Rapid recovery of thermal environment after selective logging in the Amazon. Agric. Meteorol. 278, 107637 (2019).
Mills, M. B. et al. Tropical forests post-logging are a persistent net carbon source to the atmosphere. Proc. Natl Acad. Sci. USA 120, e2214462120 (2023).
Burivalova, Z., Şekercioǧlu & Koh, ÇH. L. P. Thresholds of logging intensity to maintain tropical forest biodiversity. Curr. Biol. 24, 1893–1898 (2014).
Putz, F. E., Sist, P., Fredericksen, T. & Dykstra, D. Reduced-impact logging: challenges and opportunities. Ecol. Manag. 256, 1427–1433 (2008).
Boul Lefeuvre, N. et al. The value of logged tropical forests: a study of ecosystem services in Sabah, Borneo. Environ. Sci. Policy 128, 56–67 (2022).
Malhi, Y. et al. Logged tropical forests have amplified and diverse ecosystem energetics. Nature 612, 707–713 (2022).
Edwards, D. P., Tobias, J. A., Sheil, D., Meijaard, E. & Laurance, W. F. Maintaining ecosystem function and services in logged tropical forests. Trends Ecol. Evol. 29, 511–520 (2014).
Michalski, F. & Peres, C. A. Biodiversity depends on logging recovery time. Science 339, 1521–1523 (2013).
Nepstad, D. et al. Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398, 505–508 (1999).
Brando, P. et al. Amazon wildfires: scenes from a foreseeable disaster. Flora 268, 151609 (2020).
Goldammer, J. G. Fire in the tropical biota — Ecosystem Processes and Global Challenges. 319–399 https://www.amazon.com/Fire-Tropical-Biota-Challenges-Ecological/dp/3642753973 (1990).
Morton, D. C., Le Page, Y., DeFries, R., Collatz, G. J. & Hurtt, G. C. Understorey fire frequency and the fate of burned forests in southern Amazonia. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120163 (2013).
Kelly, L. T. et al. Fire and biodiversity in the Anthropocene. Science 370, eabb0355 (2020).
Rogers, B. M., Balch, J. K., Goetz, S. J., Lehmann, C. E. R. & Turetsky, M. Focus on changing fire regimes: interactions with climate, ecosystems, and society. Environ. Res. Lett. 15, 030201 (2020).
Aragão, L. E. O. C. et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).
Lewis, S. L., Brando, P. M., Phillips, O. L., Van Der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon Drought. Science 331, 554 (2011).
Silva, S. S. D. et al. Dynamics of forest fires in the southwestern Amazon. Ecol. Manag. 424, 312–322 (2018).
Barlow, J., Berenguer, E., Carmenta, R. & França, F. Clarifying Amazonia’s burning crisis. Glob. Change Biol. 26, 319–321 (2019).
Barlow, J. & Peres, C. a. Fire-mediated dieback and compositional cascade in an Amazonian forest. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 1787–1794 (2008).
Pausas, J. G. Evolutionary fire ecology: lessons learned from pines. Trends Plant Sci. 20, 318–324 (2015).
Cobelo, I. et al. The impact of wildfires on air pollution and health across land use categories in Brazil over a 16-year period. Environ. Res. 224, 115522 (2023).
Barlow, J., Peres, C. A., Lagan, B. O. & Haugaasen, T. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecol. Lett. 6, 6–8 (2003).
Berenguer, E. et al. Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests. Proc. Natl Acad. Sci. USA 118, e2019377118 (2021).
Holdsworth, A. R. & Uhl, C. Fire in Amazonian selectively-logged rain forest and the potential for fire reduction. Ecol. Appl. 7, 713–725 (1997).
Ocampo-Zuleta, K., Pausas, J. G. & Paula, S. FLAMITS: A global database of plant flammability traits. Glob. Ecol. Biogeogr. 33, 412–425 (2024).
Kraus, P. D., Goldammer, J. G., Schmerbeck, J., Hiremath, A. J. & Ravichandran, C. Fire Regimes Ecosyst. 6, 10 (2007).
Cochrane, M. A. & Schulze, M. D. Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica 31, 2–16 (1999).
Matricardi, E. A. T., Skole, D. L., Pedlowski, M. A., Chomentowski, W. & Fernandes, L. C. Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sens. Environ. 114, 1117–1129 (2010).
Senior, R. A., Hill, J. K., Benedick, S. & Edwards, D. P. Tropical forests are thermally buffered despite intensive selective logging. Glob. Change Biol. 44, 1–18 (2017).
Ellis, P., Griscom, B., Walker, W., Gonçalves, F. & Cormier, T. Mapping selective logging impacts in Borneo with GPS and airborne lidar. Ecol. Manag. 365, 184–196 (2016).
Bicknell, J. E., Struebig, M. J., Edwards, D. P. & Davies, Z. G. Improved timber harvest techniques maintain biodiversity in tropical forests. Curr. Biol. 24, 1119–R1120 (2014).
Uhl, C. & Kauffman, J. B. Deforestation, Fire susceptibility, and Potential tree responses to fire in the eastern Amazon. Ecology 71, 437–449 (1990).
Balch, J. K. et al. The susceptibility of southeastern Amazon forests to fire: insights from a large-scale burn experiment. BioScience 65, 893–905 (2015).
Numata, I., Silva, S. S., Cochrane, M. A. & d’Oliveira, M. V. N. Fire and edge effects in a fragmented tropical forest landscape in the southwestern Amazon. Ecol. Manag. 401, 135–146 (2017).
Silvério, D. V. et al. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native Cerrado and exotic pasture grasses. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120427 (2013).
Cochrane, M. A. & Laurance, W. F. Synergisms among Fire, Land Use, and Climate Change in the Amazon. AMBIO J. Hum. Environ. 37, 522–527 (2008).
Brando, P. M. et al. The gathering firestorm in southern Amazonia. Sci. Adv. 6, eaay1632 (2020).
Brando, P. M., Oliveria-Santos, C., Rocha, W., Cury, R. & Coe, M. T. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest. Glob. Change Biol. 22, 2516–2525 (2016).
Alencar, A. A., Nepstad, D. & Vera Diaz, M. del C. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions. Earth Interact. 10, 1–17 (2006).
Csillik, O. et al. A large net carbon loss attributed to anthropogenic and natural disturbances in the Amazon arc of deforestation. Proc. Natl Acad. Sci. USA 121, e2310157121 (2024).
Flores, B. M. et al. Critical transitions in the Amazon forest system. Nature 626, 555–564 (2024).
Nepstad, D., Stickler, C. M., Filho, B. S. & Merry, F. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 1737–1746 (2008).
Machado, M. S. et al. Emergency policies are not enough to resolve Amazonia’s fire crises. Commun. Earth Environ. 5, 204 (2024).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Funk, C. et al. The climate hazards infrared precipitation with stations—ā new environmental record for monitoring extremes. Sci. Data 2, 1–21 (2015).
Olson, D. M. et al. Terrestrial Ecoregions of the World: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).
ESRI. Data and Maps.
Gonzalez del Pliego, P. et al. Thermally buffered microhabitats recovery in tropical secondary forests following land abandonment. Biol. Conserv. 201, 385–395 (2016).
Scheffers, B. R. et al. Thermal buffering of microhabitats is a critical factor mediating warming vulnerability of frogs in the Philippine biodiversity hotspot. Biotropica 45, 628–635 (2013).
Tattersall, G.J. Thermimage: Thermal Image Analysis. R. package version 2, 3 (2016).
Anderson, H. E. Forest fuel ignitibility. Fire Technol. 6, 312–319 (1970).
Simpson, K. J. et al. Determinants of flammability in savanna grass species. J. Ecol. 104, 138–148 (2016).
Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting Linear Mixed-Effects Models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and Nonlinear Mixed Effects Models (2018).
R. Core Team. R: A language and environment for statistical computing. Found. Stat. Comput. Vienna Austria (2017).
Akaike, H. Stochastic theory of minimal realization. IEEE Trans. Autom. Control 19, 667–674 (1974).
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. vol. 53 (2013).