Experimental assessment of forest flammability after selective logging in the Brazilian Amazon

  • Foley, J. A. et al. Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 5, 25–32 (2007).

    Google Scholar 

  • Gardner, T. A. et al. Prospects for tropical forest biodiversity in a human-modified world. Ecol. Lett. 12, 561–582 (2009).

    Google Scholar 

  • Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

    Google Scholar 

  • Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).

    Google Scholar 

  • Bourgoin, C. et al. Human degradation of tropical moist forests is greater than previously estimated. Nature https://doi.org/10.1038/s41586-024-07629-0 (2024).

  • Lapola, D. M. et al. The drivers and impacts of Amazon forest degradation. Science 379, eabp8622 (2023).

    Google Scholar 

  • Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).

    Google Scholar 

  • Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical Forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).

    Google Scholar 

  • Costa, F. & Magnusson, W. Selective logging effects on abundance, diversity, and composition of tropical understory herbs. Ecol. Appl. 12, 807–819 (2002).

    Google Scholar 

  • Feldpausch, T. R. et al. Nitrogen aboveground turnover and soil stocks to 8 m depth in primary and selectively logged forest in southern Amazonia. Glob. Change Biol. 16, 1793–1805 (2010).

    Google Scholar 

  • Mollinari, M. M., Peres, C. A. & Edwards, D. P. Rapid recovery of thermal environment after selective logging in the Amazon. Agric. Meteorol. 278, 107637 (2019).

    Google Scholar 

  • Mills, M. B. et al. Tropical forests post-logging are a persistent net carbon source to the atmosphere. Proc. Natl Acad. Sci. USA 120, e2214462120 (2023).

    Google Scholar 

  • Burivalova, Z., Şekercioǧlu & Koh, ÇH. L. P. Thresholds of logging intensity to maintain tropical forest biodiversity. Curr. Biol. 24, 1893–1898 (2014).

    Google Scholar 

  • Putz, F. E., Sist, P., Fredericksen, T. & Dykstra, D. Reduced-impact logging: challenges and opportunities. Ecol. Manag. 256, 1427–1433 (2008).

    Google Scholar 

  • Boul Lefeuvre, N. et al. The value of logged tropical forests: a study of ecosystem services in Sabah, Borneo. Environ. Sci. Policy 128, 56–67 (2022).

    Google Scholar 

  • Malhi, Y. et al. Logged tropical forests have amplified and diverse ecosystem energetics. Nature 612, 707–713 (2022).

    Google Scholar 

  • Edwards, D. P., Tobias, J. A., Sheil, D., Meijaard, E. & Laurance, W. F. Maintaining ecosystem function and services in logged tropical forests. Trends Ecol. Evol. 29, 511–520 (2014).

    Google Scholar 

  • Michalski, F. & Peres, C. A. Biodiversity depends on logging recovery time. Science 339, 1521–1523 (2013).

    Google Scholar 

  • Nepstad, D. et al. Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398, 505–508 (1999).

    Google Scholar 

  • Brando, P. et al. Amazon wildfires: scenes from a foreseeable disaster. Flora 268, 151609 (2020).

    Google Scholar 

  • Goldammer, J. G. Fire in the tropical biota — Ecosystem Processes and Global Challenges. 319–399 https://www.amazon.com/Fire-Tropical-Biota-Challenges-Ecological/dp/3642753973 (1990).

  • Morton, D. C., Le Page, Y., DeFries, R., Collatz, G. J. & Hurtt, G. C. Understorey fire frequency and the fate of burned forests in southern Amazonia. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120163 (2013).

    Google Scholar 

  • Kelly, L. T. et al. Fire and biodiversity in the Anthropocene. Science 370, eabb0355 (2020).

    Google Scholar 

  • Rogers, B. M., Balch, J. K., Goetz, S. J., Lehmann, C. E. R. & Turetsky, M. Focus on changing fire regimes: interactions with climate, ecosystems, and society. Environ. Res. Lett. 15, 030201 (2020).

    Google Scholar 

  • Aragão, L. E. O. C. et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).

    Google Scholar 

  • Lewis, S. L., Brando, P. M., Phillips, O. L., Van Der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon Drought. Science 331, 554 (2011).

    Google Scholar 

  • Silva, S. S. D. et al. Dynamics of forest fires in the southwestern Amazon. Ecol. Manag. 424, 312–322 (2018).

    Google Scholar 

  • Barlow, J., Berenguer, E., Carmenta, R. & França, F. Clarifying Amazonia’s burning crisis. Glob. Change Biol. 26, 319–321 (2019).

    Google Scholar 

  • Barlow, J. & Peres, C. a. Fire-mediated dieback and compositional cascade in an Amazonian forest. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 1787–1794 (2008).

    Google Scholar 

  • Pausas, J. G. Evolutionary fire ecology: lessons learned from pines. Trends Plant Sci. 20, 318–324 (2015).

    Google Scholar 

  • Cobelo, I. et al. The impact of wildfires on air pollution and health across land use categories in Brazil over a 16-year period. Environ. Res. 224, 115522 (2023).

    Google Scholar 

  • Barlow, J., Peres, C. A., Lagan, B. O. & Haugaasen, T. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecol. Lett. 6, 6–8 (2003).

    Google Scholar 

  • Berenguer, E. et al. Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests. Proc. Natl Acad. Sci. USA 118, e2019377118 (2021).

    Google Scholar 

  • Holdsworth, A. R. & Uhl, C. Fire in Amazonian selectively-logged rain forest and the potential for fire reduction. Ecol. Appl. 7, 713–725 (1997).

    Google Scholar 

  • Ocampo-Zuleta, K., Pausas, J. G. & Paula, S. FLAMITS: A global database of plant flammability traits. Glob. Ecol. Biogeogr. 33, 412–425 (2024).

    Google Scholar 

  • Kraus, P. D., Goldammer, J. G., Schmerbeck, J., Hiremath, A. J. & Ravichandran, C. Fire Regimes Ecosyst. 6, 10 (2007).

    Google Scholar 

  • Cochrane, M. A. & Schulze, M. D. Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica 31, 2–16 (1999).

    Google Scholar 

  • Matricardi, E. A. T., Skole, D. L., Pedlowski, M. A., Chomentowski, W. & Fernandes, L. C. Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sens. Environ. 114, 1117–1129 (2010).

    Google Scholar 

  • Senior, R. A., Hill, J. K., Benedick, S. & Edwards, D. P. Tropical forests are thermally buffered despite intensive selective logging. Glob. Change Biol. 44, 1–18 (2017).

    Google Scholar 

  • Ellis, P., Griscom, B., Walker, W., Gonçalves, F. & Cormier, T. Mapping selective logging impacts in Borneo with GPS and airborne lidar. Ecol. Manag. 365, 184–196 (2016).

    Google Scholar 

  • Bicknell, J. E., Struebig, M. J., Edwards, D. P. & Davies, Z. G. Improved timber harvest techniques maintain biodiversity in tropical forests. Curr. Biol. 24, 1119–R1120 (2014).

    Google Scholar 

  • Uhl, C. & Kauffman, J. B. Deforestation, Fire susceptibility, and Potential tree responses to fire in the eastern Amazon. Ecology 71, 437–449 (1990).

    Google Scholar 

  • Balch, J. K. et al. The susceptibility of southeastern Amazon forests to fire: insights from a large-scale burn experiment. BioScience 65, 893–905 (2015).

    Google Scholar 

  • Numata, I., Silva, S. S., Cochrane, M. A. & d’Oliveira, M. V. N. Fire and edge effects in a fragmented tropical forest landscape in the southwestern Amazon. Ecol. Manag. 401, 135–146 (2017).

    Google Scholar 

  • Silvério, D. V. et al. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native Cerrado and exotic pasture grasses. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120427 (2013).

    Google Scholar 

  • Cochrane, M. A. & Laurance, W. F. Synergisms among Fire, Land Use, and Climate Change in the Amazon. AMBIO J. Hum. Environ. 37, 522–527 (2008).

    Google Scholar 

  • Brando, P. M. et al. The gathering firestorm in southern Amazonia. Sci. Adv. 6, eaay1632 (2020).

    Google Scholar 

  • Brando, P. M., Oliveria-Santos, C., Rocha, W., Cury, R. & Coe, M. T. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest. Glob. Change Biol. 22, 2516–2525 (2016).

    Google Scholar 

  • Alencar, A. A., Nepstad, D. & Vera Diaz, M. del C. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions. Earth Interact. 10, 1–17 (2006).

  • Csillik, O. et al. A large net carbon loss attributed to anthropogenic and natural disturbances in the Amazon arc of deforestation. Proc. Natl Acad. Sci. USA 121, e2310157121 (2024).

    Google Scholar 

  • Flores, B. M. et al. Critical transitions in the Amazon forest system. Nature 626, 555–564 (2024).

    Google Scholar 

  • Nepstad, D., Stickler, C. M., Filho, B. S. & Merry, F. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 1737–1746 (2008).

  • Machado, M. S. et al. Emergency policies are not enough to resolve Amazonia’s fire crises. Commun. Earth Environ. 5, 204 (2024).

    Google Scholar 

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Google Scholar 

  • Funk, C. et al. The climate hazards infrared precipitation with stations—ā new environmental record for monitoring extremes. Sci. Data 2, 1–21 (2015).

    Google Scholar 

  • Olson, D. M. et al. Terrestrial Ecoregions of the World: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).

    Google Scholar 

  • ESRI. Data and Maps.

  • Gonzalez del Pliego, P. et al. Thermally buffered microhabitats recovery in tropical secondary forests following land abandonment. Biol. Conserv. 201, 385–395 (2016).

    Google Scholar 

  • Scheffers, B. R. et al. Thermal buffering of microhabitats is a critical factor mediating warming vulnerability of frogs in the Philippine biodiversity hotspot. Biotropica 45, 628–635 (2013).

    Google Scholar 

  • Tattersall, G.J. Thermimage: Thermal Image Analysis. R. package version 2, 3 (2016).

  • Anderson, H. E. Forest fuel ignitibility. Fire Technol. 6, 312–319 (1970).

    Google Scholar 

  • Simpson, K. J. et al. Determinants of flammability in savanna grass species. J. Ecol. 104, 138–148 (2016).

    Google Scholar 

  • Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting Linear Mixed-Effects Models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and Nonlinear Mixed Effects Models (2018).

  • R. Core Team. R: A language and environment for statistical computing. Found. Stat. Comput. Vienna Austria (2017).

  • Akaike, H. Stochastic theory of minimal realization. IEEE Trans. Autom. Control 19, 667–674 (1974).

  • Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. vol. 53 (2013).

  • Continue Reading