Graph-augmented transformer ensemble framework for robust and scalable fake news detection in social media ecosystems

  • Almandouh, M., Alrahmawy, M. F., Eisa, M., Elhoseny, M. & Tolba, A. S. Ensemble based high performance deep learning models for fake news detection. Sci. Rep. 14, 26591. https://doi.org/10.1038/s41598-024-26591-5 (2024).

    Google Scholar 

  • Praseed, A., Rodrigues, J. & Santhi, T. P. Disinformation detection using graph neural networks: A survey. Artif. Intell. Rev. 57 (2024).

  • Liu, J., Wu, F., Jin, H., Zhu, X. & Jing, X. Y. Inter-modal fusion network with graph structure preserving for fake news detection. In: Neural Information Processing. Springer, 1–9 https://doi.org/10.1007/978-981-99-8076-5_20 (2024).

  • Jiang, Y. & Liu, X. Deep learning for fake news detection: A survey. Artif. Intell. 303, 101235. https://doi.org/10.1016/j.artint.2022.101235 (2022).

    Google Scholar 

  • Harris, S., Hadi, H. J., Ahmad, N. & Alshara, M. A. Fake news detection revisited: an extensive review of theoretical frameworks, dataset assessments, model constraints, and forward-looking research agendas. Technologies 12, 222. https://doi.org/10.3390/technologies12110222 (2024).

    Google Scholar 

  • Wang, B., Feng, Y., Xiong, X. C., Wang, Y. H. & Qiang, B. H. Multi-modal transformer using two-level visual features for fake news detection. Appl. Intell. 53, 10429–10443. https://doi.org/10.1007/s10489-022-04055-5 (2022).

    Google Scholar 

  • Lee, D. & Kim, S. Detecting fake news using social media and graph neural networks. J. Comput. Social Sci. 5, 125–137. https://doi.org/10.1007/s42001-021-00110-3 (2022).

    Google Scholar 

  • Song, C., Teng, Y., Zhu, Y., Wei, S. & Bin, B. Dynamic graph neural network for fake news detection. Neurocomputing 505, 362–374. https://doi.org/10.1016/j.neucom.2022.07.013 (2022).

    Google Scholar 

  • Xu, W., Wang, X. & Chen, Q. Leveraging attention-based networks for fake news detection in social media. IEEE Access. 10, 47115–47127. https://doi.org/10.1109/ACCESS.2022.3181273 (2022).

    Google Scholar 

  • Roumeliotis, K. I., Tselikas, N. D. & Nasiopoulos, D. K. Fake news detection and classification: A comparative study of convolutional neural networks, large Language models, and natural Language processing models. Future Internet. 17, 28. https://doi.org/10.3390/fi17010028 (2025).

    Google Scholar 

  • Folino, F., Folino, G., Guarascio, M. & Tagarelli, A. Towards data- and compute-efficient fake news detection: an approach combining active learning and pre-trained Language models. SN Comput. Sci. 5, 470. https://doi.org/10.1007/s42979-024-02809-1 (2024).

    Google Scholar 

  • Sudhakar, M. & Kaliyamurthie, K. P. Efficient prediction of fake news using novel ensemble technique based on machine learning algorithm. In: Information and Communication Technology for Competitive Strategies. Springer, 1–10 https://doi.org/10.1007/978-981-19-0098-3_1 (2023).

  • Luo, P. & Xie, Y. Fake news detection via multi-task learning on graph networks. Inf. Sci. 613, 533–550. https://doi.org/10.1016/j.ins.2022.09.040 (2023).

    Google Scholar 

  • Xu, X., Sun, C. & Wang, S. Fake news detection via multi-view graph convolutional network. ACM Trans. Inform. Syst. 41, 47. https://doi.org/10.1145/3458986.3458991 (2023).

    Google Scholar 

  • Zhang, X. & Zhao, Q. Fake news detection using graph neural networks: A comprehensive survey. Neural Comput. Appl. https://doi.org/10.1007/s00542-023-08257-w (2023).

    Google Scholar 

  • Rani, S. & Kumar, M. Multi-modal topic modeling from social media data using deep transfer learning. Appl. Soft Comput. 160, 111706. https://doi.org/10.1016/j.asoc.2024.111706 (2024).

    Google Scholar 

  • Kumar, Y., Bhardwaj, P., Shrivastav, S. & Mehta, K. Predicting paediatric brain disorders from MRI images using advanced deep learning techniques. Neuroinformatics 23 (2), 9. https://doi.org/10.1007/s12021-024-09707-0 (2025).

    Google Scholar 

  • Modi, N. et al. Physiological signal-based mental stress detection using hybrid deep learning models. Discover Artif. Intell. 5, 166. https://doi.org/10.1007/s44163-025-00412-8 (2025).

    Google Scholar 

  • Alzahrani, M. A. & Aljuhani, M. A. Enhancing fake news detection with word embedding: A machine learning and deep learning approach. Computers 13, 239. https://doi.org/10.3390/computers13090239 (2024).

    Google Scholar 

  • Zamani, A. S., Hashim, A. H. A., Mohamed, S. S. I. & Alam, M. N. Optimized deep learning techniques to identify rumors and fake news in online social networks. J. Comput. Cogn. Eng. 2, 1–12. https://doi.org/10.47852/bonviewJCCE52023348 (2023).

    Google Scholar 

  • Wei, L. & Zhang, T. Fake news detection using deep learning-based fusion of graph convolutional networks and transformer models. Inform. Fusion. 81, 146–159. https://doi.org/10.1016/j.inffus.2022.11.004 (2023).

    Google Scholar 

  • Abduljaleel, I. Q. & Ali, I. H. Deep learning and fusion mechanism-based multimodal fake news detection methodologies: A review. Eng. Technol. Appl. Sci. Res. 14, 15665–15675. https://doi.org/10.48084/etasr.7907 (2024).

    Google Scholar 

  • Li, H., Liu, L. & Wang, Y. Fake news detection using a transformer-based framework with attention mechanisms. Expert Syst. Appl. 182, 115129. https://doi.org/10.1016/j.eswa.2021.115129 (2022).

    Google Scholar 

  • Jing, J., Wu, H., Sun, J., Fang, X. & Zhang, H. Multimodal fake news detection via progressive fusion networks. Inf. Process. Manag. 60, 103120. https://doi.org/10.1016/j.ipm.2022.103120 (2023).

    Google Scholar 

  • Dixit, D. K., Bhagat, A. & Dangi, D. An accurate fake news detection approach based on a levy flight honey Badger optimized convolutional neural network model. Concurrency Computation: Pract. Experience. 35, e7382. https://doi.org/10.1002/cpe.7382 (2023).

    Google Scholar 

  • Yang, L. & Lee, K. Fake news detection in social media using a hybrid model of deep neural networks. Neural Netw. 145, 202–213. https://doi.org/10.1016/j.neunet.2021.09.003 (2022).

    Google Scholar 

  • Singhania, S., Fernandez, N. & Rao, S. 3HAN: A deep neural network for fake news detection. ArXiv Preprint (2023). ArXiv:2306.12014

  • Kikon, J. M. & Bania, R. K. Towards development of machine learning models for fake news detection and sentiment analysis. In: Proceedings of the NIELIT’s International Conference on Communication, Electronics and Digital Technology (NICEDT 2024). pp. 99–107 https://doi.org/10.1007/978-981-97-3601-0_8 (Springer, Singapore, 2024).

  • Fu, X., Guo, C. & Yuan, Z. A survey of fake news detection in social media: Methods, trends, and challenges. Computers 12, 80. https://doi.org/10.3390/computers12050080 (2023).

    Google Scholar 

  • Patel, R. & Gupta, P. Fake news detection via text and graph-based fusion learning. Comput. Intell. Neurosci. https://doi.org/10.1155/2022/6574754 (2022).

    Google Scholar 

  • Truică, C. O., Apostol, E. S., Marogel, M., Paschke, A. & GETAE Graph information enhanced deep neural network ensemble architecture for fake news detection. Expert Syst. Appl. 275, 126984. https://doi.org/10.1016/j.eswa.2025.126984 (2025).

    Google Scholar 

  • Zhang, L. & Chen, X. An improved method for fake news detection using attention-based neural networks. Appl. Soft Comput. 115, 108273. https://doi.org/10.1016/j.asoc.2021.108273 (2022).

    Google Scholar 

  • Papageorgiou, E., Varlamis, I. & Chronis, C. Harnessing large Language models and deep neural networks for fake news detection. Information 16, 297. https://doi.org/10.3390/info16040297 (2025).

    Google Scholar 

  • Jin, W. et al. Veracity-oriented context-aware large Language models–based prompting optimization for fake news detection. Int. J. Intell. Syst. 40, 5920142. https://doi.org/10.1002/int.5920142 (2025).

    Google Scholar 

  • Jin, W. et al. -FND: A multi-role fake news detection method based on argument switching-based courtroom debate. J. King Saud Univ. – Comput. Inform. Sci. 37, 33. https://doi.org/10.1016/j.jksuci.2024.101033 (2025).

    Google Scholar 

  • Khattar, D., Goud, J. S., Gupta, M. & Mvae, V. V. Multimodal variational autoencoder for fake news detection. In: The World Wide Web Conference, pp. 2915–2921 (2019).

  • Jin, W. et al. A veracity dissemination consistency-based few-shot fake news detection framework by synergizing adversarial and contrastive self-supervised learning. Sci. Rep. 14, 19470. https://doi.org/10.1038/s41598-024-19470-0 (2024).

    Google Scholar 

  • Jin, W. et al. A prompting multi-task learning-based veracity dissemination consistency reasoning augmentation for few-shot fake news detection. Eng. Appl. Artif. Intell. 144, 110122. https://doi.org/10.1016/j.engappai.2025.110122 (2025).

    Google Scholar 

  • Abulaish, M., Kamal, A. & Zaki, M. J. A survey of figurative Language and its computational detection in online social networks. ACM Trans. Web. 14, 1–52. https://doi.org/10.1145/3383212 (2020).

    Google Scholar 

  • Kamal, A. & Abulaish, M. Contextualized satire detection in short texts using deep learning techniques. J. Web Eng. 23, 27–52 (2024).

    Google Scholar 

  • Abulaish, M. & Kamal, A. Self-deprecating sarcasm detection: An amalgamation of rule-based and machine learning approach. In: 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI). pp. 415–422 https://doi.org/10.1109/WI.2018.00-25 (IEEE, 2018).

  • Kamal, A., Anwar, T., Sejwal, V. K., Fazil, M. & BiCapsHate Attention to the linguistic context of hate via bidirectional capsules and hatebase. IEEE Trans. Comput. Social Syst. 11, 1781–1792. https://doi.org/10.1109/TCSS.2022.3228775 (2023).

    Google Scholar 

  • Mohankumar, P., Kamal, A., Singh, V. K. & Satish, A. Financial fake news detection via context-aware embedding and sequential representation using cross-joint networks. In: 2023 15th International Conference on Communication Systems & Networks (COMSNETS), pp. 780–784 https://doi.org/10.1109/COMSNETS56262.2023.10041125 (IEEE, 2023).

  • Kamal, A., Mohankumar, P. & Singh, V. K. Financial misinformation detection via RoBERTa and multi-channel networks. In: International Conference on Pattern Recognition and Machine Intelligence. pp. 646–653 https://doi.org/10.1007/978-3-031-40375-8_53 (Springer, Cham, 2023).

  • Ilie, V. I., Truică, C. O., Apostol, E. S. & Paschke, A. Context-aware misinformation detection: A benchmark of deep learning architectures using word embeddings. IEEE Access. 9, 162122–162146. https://doi.org/10.1109/ACCESS.2021.3132502 (2021).

    Google Scholar 

  • Truică, C. O., Apostol, E. S. & MisRoBÆRTa Transformers versus misinformation. Mathematics 10, 569. https://doi.org/10.3390/math10040569 (2022).

    Google Scholar 

  • Truică, C. O. & Apostol, E. S. Fake news detection using sentence Transformers. CEUR Workshop Proc. 3180, paper–61 (2022). https://ceur-ws.org/Vol-3180/paper-61.pdf

    Google Scholar 

  • Truică, C. O. & Apostol, E. S. It’s all in the embedding! Fake news detection using document embeddings. Mathematics 11, 508. https://doi.org/10.3390/math11030508 (2023).

    Google Scholar 

  • Petrescu, A., Truică, C. O. & Apostol, E. S. Language-based mixture of Transformers for EXIST2024. CEUR Workshop Proc. 3740, paper–108 (2024). https://ceur-ws.org/Vol-3740/paper-108.pdf

    Google Scholar 

  • Truică, C. O., Apostol, E. S. & Karras, P. Deep neural network ensemble architecture for social and textual context-aware fake news detection. Knowl. Based Syst. 294, 111715. https://doi.org/10.1016/j.knosys.2024.111715 (2024).

    Google Scholar 

  • E Almandouh M, Alrahmawy MF, Eisa M, Elhoseny M, Tolba AS. Ensemble based highperformance deep learning models for fake news detection. Scientific Reports 14 (1), 26591 (2024).

  • Ghosh, A. et al. Proactive network immunization for misinformation control. In: Proceedings of the ACM Conference on Computer and Communications Security (CCS), pp. xxx–xxx https://doi.org/10.1145/3459637.3482481 (2021).

  • Truică, C. O., Apostol, E. S., Nicolescu, R. C. & Karras, P. M. C. W. D. S. T. A minimum-cost weighted directed spanning tree algorithm for real-time fake news mitigation in social media. IEEE Access. 11, 125861–125873. https://doi.org/10.1109/ACCESS.2023.3331220 (2023).

    Google Scholar 

  • Apostol, E. S., Coban, Ö. & Truică, C. O. CONTAIN: A community-based algorithm for network immunization. Eng. Sci. Technol. Int. J. 55, 101728. https://doi.org/10.1016/j.jestch.2024.101728 (2024).

    Google Scholar 

  • Apostol, E. S., Truică, C. O., Paschke, A. & ContCommRTD A distributed content-based misinformation-aware community detection system for real-time disaster reporting. IEEE Trans. Knowl. Data Eng. 36, 5811–5822. https://doi.org/10.1109/TKDE.2024.3417232 (2024).

    Google Scholar 

  • Truică, C. O., Constantinescu, A. T. & Apostol, E. S. StopHC: A harmful content detection and mitigation architecture for social media platforms. In: Proceedings of the IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), pp. xxx–xxx https://doi.org/10.1109/ICCP63557.2024.10793051 (2024).

  • Almeida, F. et al. Virality detection in social media. In: Proceedings of the International Conference on Extending Database Technology (EDBT), pp. xxx–xxx https://doi.org/10.5441/002/edbt.2021.69 (2021).

  • Continue Reading