Culture-free detection of bacteria from blood for rapid sepsis diagnosis

  • Singer, M. et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). J. Am. Med. Assoc. 315, 801–810 (2016).

    Google Scholar 

  • Rudd, K. E. et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet 395, 200–211 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Thompson, K., Venkatesh, B. & Finfer, S. Sepsis and septic shock: current approaches to management. Intern. Med. J. 49, 160–170 (2019).

    PubMed 

    Google Scholar 

  • Kumar, A. et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 34, 1589–1596 (2006).

    PubMed 

    Google Scholar 

  • Huerta, L. E. & Rice, T. W. Pathologic difference between sepsis and bloodstream infections. J. Appl. Lab. Med. 3, 654–663 (2019).

    PubMed 

    Google Scholar 

  • Bates, D. W. et al. Predicting bacteremia in patients with sepsis syndrome. J. Infect. Dis. 176, 1538–1551 (1997).

    PubMed 

    Google Scholar 

  • Yagupsky, P. & Nolte, F. S. Quantitative aspects of septicemia. Clin. Microbiol. Rev. 3, 269–279 (1990).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cohen, J. et al. Sepsis: a roadmap for future research. Lancet Infect. Dis. 15, 581–614 (2015).

    PubMed 

    Google Scholar 

  • Morgenthaler, N. G. & Kostrzewa, M. Rapid identification of pathogens in positive blood culture of patients with sepsis: Review and meta-analysis of the performance of the Sepsityper kit. Int. J. Microbiol. 2015, 827416 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lambregts, M. M., Bernards, A. T., van der Beek, M. T., Visser, L. G. & de Boer, M. G. Time to positivity of blood cultures supports early re-evaluation of empiric broad-spectrum antimicrobial therapy. PLoS ONE 14, 1–12 (2019).

    Google Scholar 

  • McGregor, C. Improving time to antibiotics and implementing the “Sepsis 6”. BMJ Open Quality 2 https://bmjopenquality.bmj.com/content/2/2/u202548.w1443 (2014).

  • Bochud, P. Y., Glauser, M. P., Calandra, T. & International Sepsis Forum. Antibiotics in sepsis. Intens. Care Med. 27, S33–48 (2001).

    Google Scholar 

  • Rhee, C. et al. Prevalence, underlying causes, and preventability of sepsis-associated mortality in US acute care hospitals. JAMA Netw. Open 2, 1–14 (2019).

    Google Scholar 

  • Llor, C. & Bjerrum, L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther. Adv. Drug Saf. 5, 229–241 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Korvick, J. A., Peacock, J. E., Muder, R. R., Wheeler, R. R. & Yu, V. L. Addition of rifampin to combination antibiotic therapy for Pseudomonas aeruginosa bacteremia: prospective trial using the Zelen protocol. Antimicrob. Agents Chemother. 36, 620–625 (1992).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ombelet, S. et al. Best practices of blood cultures in low- and middle-income countries. Front. Med. 6, 131 (2019).

    Google Scholar 

  • Mazzulli, T. et al. Impact of implementation of bact/alert virtuo on blood culture time to positivity in sepsis patients. Microbiol. Spectr. 11, e05003–22 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tjandra, K. C. et al. Diagnosis of bloodstream infections: an evolution of technologies towards accurate and rapid identification and antibiotic susceptibility testing. Antibiotics 11, 511 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Khan, Z. A., Siddiqui, M. F. & Park, S. Current and emerging methods of antibiotic susceptibility testing. Diagnostics 9, 49 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jorgensen, J. H. & Ferraro, M. J. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin. Infect. Dis. 49, 1749–1755 (2009).

    PubMed 

    Google Scholar 

  • Ekwall-Larson, A., Fröding,I., Mert, B., Åkerlund, A. & Özenci, V. Analytical performance and potential clinical utility of EUCAST rapid antimicrobial susceptibility testing in blood cultures after four hours of incubation. Microbiol. Spectrum 11, e0500122 (2023).

    Google Scholar 

  • Banerjee, R. & Humphries, R. Rapid antimicrobial susceptibility testing methods for blood cultures and their clinical impact. Front. Med. 8, 635831 (2021).

    Google Scholar 

  • Jonasson, E., Matuschek, E. & Kahlmeter, G. The EUCAST rapid disc diffusion method for antimicrobial susceptibility testing directly from positive blood culture bottles. J. Antimicrob. Chemother. 75, 968–978 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Baltekin, Ö. et al. Evaluation of an ultra-rapid antibiotic susceptibility testing method on positive blood cultures with Escherichia coli. Preprint at https://www.medrxiv.org/content/10.1101/2021.12.14.21267046v1 (2021).

  • Wu, W. et al. Direct single-cell antimicrobial susceptibility testing of Escherichia coli in urine using a ready-to-use 3d microwell array chip. Lab Chip 23, 2399–2410 (2023).

    PubMed 

    Google Scholar 

  • Rojas-Andrade, M. D. et al. Rapid antibiotic susceptibility determination by fluorescence lifetime tracking of bacterial metabolism. ACS Infect. Dis. 10, 4057–4065 (2024).

    PubMed 

    Google Scholar 

  • Wu, W. et al. Enzymatic antimicrobial susceptibility testing with bacteria identification in 30 min. Anal. Chem. 95, 16426–16432 (2023).

    PubMed 

    Google Scholar 

  • Wu, W. et al. All-in-one Escherichia coli viability assay for multi-dimensional detection of uncomplicated urinary tract infections. Anal. Chem. 94, 17853–17860 (2022).

    PubMed 

    Google Scholar 

  • Wu, W. et al. Inoculum size-insensitive susceptibility determination of urine sample based on in-situ measurement of inducible enzyme activity after 20 min of antibiotic exposure. Anal. Chim. Acta 1282, 341858 (2023).

    PubMed 

    Google Scholar 

  • Wong, A. Y. W., Johnsson, A. T. A. & Özenci, V. Performance of dRAST on prospective clinical blood culture samples in a simulated clinical setting and on multidrug-resistant bacteria. Microbiol. Spectrum 10, e0210721 (2022).

    Google Scholar 

  • Marschal, M. et al. Evaluation of the accelerate pheno system for fast identification and antimicrobial susceptibility testing from positive blood cultures in bloodstream infections caused by gram-negative pathogens. J. Clin. Microbiol. 55, 2116–2126 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Reszetnik, G. et al. Next-generation rapid phenotypic antimicrobial susceptibility testing. Nat. Commun. 15, 9719 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Timsit, J. F., Ruppé, E., Barbier, F., Tabah, A. & Bassetti, M. Bloodstream infections in critically ill patients: an expert statement. Intens. Care Med. 46, 266–284 (2020).

    Google Scholar 

  • Marco, F. Molecular methods for septicemia diagnosis. Enfermedades Infecciosas y. Microbiologia Clin. 35, 586–592 (2017).

    Google Scholar 

  • Kirn, T. J. & Weinstein, M. P. Update on blood cultures: How to obtain, process, report, and interpret. Clin. Microbiol. Infect. 19, 513–520 (2013).

    PubMed 

    Google Scholar 

  • Choi, J. et al. A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Sci. Transl. Med. 6, 267ra174 (2014).

    PubMed 

    Google Scholar 

  • Kinnunen, P. et al. Monitoring the growth and drug susceptibility of individual bacteria using asynchronous magnetic bead rotation sensors. Biosens. Bioelectron. 26, 2751–2755 (2011).

    PubMed 

    Google Scholar 

  • Godin, M. et al. Using buoyant mass to measure the growth of single cells. Nat. Methods 7, 387–390 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Baltekin, Ö., Boucharin, A., Tano, E., Andersson, D. I. & Elf, J. Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging. Proc. Natl Acad. Sci. USA 114, 9170–9175 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Osaid, M. et al. A multiplexed nanoliter array-based microfluidic platform for quick, automatic antimicrobial susceptibility testing. Lab Chip. 21, 2223–2231 (2021).

    PubMed 

    Google Scholar 

  • Mach, A. J. & Di Carlo, D. Continuous scalable blood filtration device using inertial microfluidics. Biotechnol. Bioeng. 107, 302–311 (2010).

    PubMed 

    Google Scholar 

  • Hou, H. W., Bhattacharyya, R. P., Hung, D. T. & Han, J. Direct detection and drug-resistance profiling of bacteremias using inertial microfluidics. Lab Chip 15, 2297–2307 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, X. et al. Sheathless and high-throughput elasto-inertial bacterial sorting for enhancing molecular diagnosis of bloodstream infection. Lab Chip 21, 2163–2177 (2021).

    PubMed 

    Google Scholar 

  • Narayana Iyengar, S., Kumar, T., Mårtensson, G. & Russom, A. High resolution and rapid separation of bacteria from blood using elasto-inertial microfluidics. Electrophoresis 42, 2538–2551 (2021).

    PubMed 

    Google Scholar 

  • Zeng, K., Osaid, M. & van der Wijngaart, W. Efficient filter-in-centrifuge separation of low-concentration bacteria from blood. Lab Chip. 23, 4334–4342 (2023).

    PubMed 

    Google Scholar 

  • Marino Miguélez, M. H., Huguenin-Dumittan, A., Osaid, M. & van der Wijngaart, W. Isolation and identification of bacteria from blood within 12 h using standard laboratory equipment. Sci. Rep. 15, 1–10 (2025).

    Google Scholar 

  • Pitt, W. G. et al. Rapid separation of bacteria from blood-review and outlook. Biotechnol. Prog. 32, 823–839 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Forsyth, B. et al. A rapid single-cell antimicrobial susceptibility testing workflow for bloodstream infections. Biosensors 11, 288 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang, Y.-L. et al. An integrated microfluidic system for early detection of sepsis-inducing bacteria. Lab Chip 21, 113–121 (2021).

    PubMed 

    Google Scholar 

  • Kang, J. H. et al. An extracorporeal blood-cleansing device for sepsis therapy. Nat. Med. 20, 1211–1216 (2014).

    PubMed 

    Google Scholar 

  • Lee, J.-J. et al. Synthetic ligand-coated magnetic nanoparticles for microfluidic bacterial separation from blood. Nano Lett. 14, 1–5 (2014).

    PubMed 

    Google Scholar 

  • Kim, T. H. et al. Blood culture-free ultra-rapid antimicrobial susceptibility testing. Nature 632, 893–902 (2024).

    PubMed 

    Google Scholar 

  • Cheng, I.-F., Chen, T.-Y., Lu, R.-J. & Wu, H.-W. Rapid identification of bacteria utilizing amplified dielectrophoretic force-assisted nanoparticle-induced surface-enhanced Raman spectroscopy. Nanoscale Res. Lett. 9, 324 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ohlsson, P. et al. Integrated acoustic separation, enrichment, and microchip polymerase chain reaction detection of bacteria from blood for rapid sepsis diagnostics. Anal. Chem. 88, 9403–9411 (2016).

    PubMed 

    Google Scholar 

  • Cooney, S., O’Brien, S., Iversen, C. & Fanning, S. Bacteria: Other Pathogenic Enterobacteriaceae – Enterobacter and Other Genera. in Encyclopedia of Food Safety (ed Motarjemi, Y.) 433–441 (Academic Press, Waltham, 2014). https://www.sciencedirect.com/science/article/pii/B9780123786128001049.

  • Sutton Scott. Accuracy of plate counts. J. Valid. Technol. 17, 42–46 (2011).

    Google Scholar 

  • Narayana Iyengar, S. et al. Toward rapid detection of viable bacteria in whole blood for early sepsis diagnostics and susceptibility testing. ACS Sens. 6, 3357–3366 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 770–778. http://ieeexplore.ieee.org/document/7780459 (2016).

  • Tan, M. & Le, Q. Efficientnetv2: smaller models and faster training. In Proc. 38th International Conference on Machine Learning, 10096–10106 (PMLR, 2021).

  • Oquab, M. et al. Dinov2: Learning robust visual features without supervision. Preprint at https://arxiv.org/abs/2304.07193 (2023).

  • Dosovitskiy, A. et al. An image is worth 16×16 words: Transformers for image recognition at scale. In Proc. International Conference on Learning Representations (2021). Preprint at https://arxiv.org/abs/2010.11929.

  • Tran, D. et al. A closer look at spatiotemporal convolutions for action recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6450–6459. https://doi.org/10.1109/CVPR.2018.00675 (2018).

  • Tabah, A. et al. Characteristics and determinants of outcome of hospital-acquired bloodstream infections in intensive care units: the Eurobact International Cohort Study. Intensive Care Med. 38, 1930–1945 (2012).

    PubMed 

    Google Scholar 

  • Umemura, Y. et al. Current spectrum of causative pathogens in sepsis: a prospective nationwide cohort study in Japan. Int. J. Infect. Dis. 103, 343–351 (2021).

    PubMed 

    Google Scholar 

  • Blumenreich, M., Walker, H., Hall, W. & Hurst, J. Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edn, (1990).

  • Loeb, L. The influence of certain bacteria on the coagulation of the blood. J. Med. Res. 10, 407–419 (1903).

    PubMed 
    PubMed Central 

    Google Scholar 

  • McAdow, M., Missiakas, D. M. & Schneewind, O. Staphylococcus aureus secretes coagulase and von Willebrand factor binding protein to modify the coagulation cascade and establish host infections. J. Innate Immun. 4, 141–148 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Evans, D. C. et al. Cooperation between coagulase and von Willebrand factor binding protein in Staphylococcus aureus fibrin pseudocapsule formation. Biofilm 8, 100233 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liesenborghs, L., Verhamme, P. & Vanassche, T. Staphylococcus aureus, master manipulator of the human hemostatic system. J. Thrombosis Haemost. 16, 441–454 (2018).

    Google Scholar 

  • Peetermans, M. et al. Targeting coagulase activity in Staphylococcus aureus bacteraemia: a randomized controlled single-centre trial of Staphylothrombin inhibition. Thrombosis Haemost. 118, 818–829 (2018).

    Google Scholar 

  • Hallström, E., Kandavalli, V., Wählby, C. & Hast, A. Rapid identification of seven bacterial species using microfluidics, time-lapse phase-contrast microscopy, and deep learning. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2024.10.15.618380v1 (2024).

  • Kandavalli, V., Karempudi, P., Larsson, J. & Elf, J. Rapid antibiotic susceptibility testing and species identification for mixed samples. Nat. Commun. 13, 6215 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ahmad, I. et al. Phenotypic antibiotic susceptibility testing at the limit of one bacterial cell. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2025.04.13.648565v1 (2025).

  • Camsund, D. et al. Time-resolved imaging-based CRISPRi screening. Nat. Methods 17, 86–92 (2020).

    PubMed 

    Google Scholar 

  • Lin, M., Chen, Q. & Yan, S. Network in network. Preprint at https://arxiv.org/abs/1312.4400 (2013).

  • Duchon, C. E. Lanczos filtering in one and two dimensions. J. Appl. Meteorol. Climatol. 18, 1016–1022 (1979).

    Google Scholar 

  • Garnier et al. viridis(Lite) – Colorblind-Friendly Color Maps for R (2024). https://sjmgarnier.github.io/viridis/. Viridis package version 0.6.5.

  • Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).

  • Loshchilov, I. & Hutter, F. Sgdr: stochastic gradient descent with warm restarts. Preprint at https://arxiv.org/abs/1608.03983 (2016).

  • Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision.In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2818–2826. https://doi.org/10.1109/CVPR.2016.308 (2016).

  • Wightman, R. Pytorch image models. https://github.com/rwightman/pytorch-image-models (2019).

  • Buslaev, A. et al. Albumentations: fast and flexible image augmentations. Information 11 https://www.mdpi.com/2078-2489/11/2/125 (2020).

  • Continue Reading