Potential of microRNAs as diagnostic markers for distinguishing malaria severity in samples from an Indian cohort | BMC Infectious Diseases

  • World malaria report. 2024. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2024.

  • Gupta H, Anvikar AR, Bharti PK. Building momentum for a malaria-free India. Am J Trop Med Hyg. 2025;112(6):1193-95. https://doi.org/10.4269/ajtmh.24-0719.

  • Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature. 2002;415(6872):673–9.

    PubMed 

    Google Scholar 

  • Hviid L, Jensen AT. PfEMP1 – A parasite protein family of key importance in Plasmodium falciparum malaria immunity and pathogenesis. Adv Parasitol. 2015;88:51–84.

    PubMed 

    Google Scholar 

  • Milner DA Jr., Whitten RO, Kamiza S, Carr R, Liomba G, Dzamalala C, Seydel KB, Molyneux ME, Taylor TE. The systemic pathology of cerebral malaria in African children. Front Cell Infect Microbiol. 2014;4:104.

    PubMed 
    PubMed Central 

    Google Scholar 

  • White NJ, Turner GD, Day NP, Dondorp AM. Lethal malaria: Marchiafava and Bignami were right. J Infect Dis. 2013;208(2):192–8.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Muppidi P, Wright E, Wassmer SC, Gupta H. Diagnosis of cerebral malaria: tools to reduce Plasmodium falciparum associated mortality. Front Cell Infect Microbiol. 2023;13:1090013.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Severe malaria. Trop Med Int Health. 2014;19 Suppl 1:7–131.

  • Sahu PK, Hoffmann A, Majhi M, Pattnaik R, Patterson C, Mahanta KC, Mohanty AK, Mohanty RR, Joshi S, Mohanty A, et al. Brain magnetic resonance imaging reveals different courses of disease in pediatric and adult cerebral malaria. Clin Infect Dis. 2021;73(7):e2387–96.

    PubMed 

    Google Scholar 

  • Seydel KB, Kampondeni SD, Valim C, Potchen MJ, Milner DA, Muwalo FW, Birbeck GL, Bradley WG, Fox LL, Glover SJ, et al. Brain swelling and death in children with cerebral malaria. N Engl J Med. 2015;372(12):1126–37.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mohanty S, Sahu PK, Pattnaik R, Majhi M, Maharana S, Bage J, Mohanty A, Mohanty A, Bendszus M, Patterson C, et al. Evidence of brain alterations in noncerebral falciparum malaria. Clin Infect Dis. 2022;75(1):11–8.

    PubMed 

    Google Scholar 

  • Latourette MT, Siebert JE, Barto RJ Jr, Marable KL, Muyepa A, Hammond CA, Potchen MJ, Kampondeni SD, Taylor TE. Magnetic resonance imaging research in sub-Saharan Africa: challenges and satellite-based networking implementation. J Digit Imaging. 2011;24(4):729–38.

    PubMed 

    Google Scholar 

  • Gupta A, Skjefte M, Muppidi P, Sikka R, Pandey M, Bharti PK, Gupta H: Unravelling the Influence of Host Genetic Factors on Malaria Susceptibility in Asian Populations. Acta Trop. 2024;249:107055. https://doi.org/10.1016/j.actatropica.2023.107055.

  • Varo R, Sitoe A, Madrid L, Aide P, Cuamba I, Cossa A, Jairoce C, Barrios D, Martianez-Vendrell X, Balanza N, et al. Host biomarkers and parasite biomass are associated with severe malaria in Mozambican children: a case-control study. Sci Rep. 2025;15(1):14262.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gupta H, Wassmer SC. Harnessing the potential of miRNAs in malaria diagnostic and prevention. Front Cell Infect Microbiol. 2021;11:793954.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sikka R, Bharti PK, Gupta H. microRNAs: An opportunity to overcome significant challenges in malaria detection and control. Curr Res Pharmacol Drug Discov. 2022;3:100115.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhandari S, Krishna S, Patel PP, Singh MP, Singh N, Sharma A, Bharti PK. Diversity and expression of Plasmodium falciparum var gene in severe and mild malaria cases from Central India. Int J Infect Dis. 2021;103:552–9.

    PubMed 

    Google Scholar 

  • Krishna S, Bharti PK, Chandel HS, Ahmad A, Kumar R, Singh PP, Singh MP, Singh N. Detection of mixed infections with Plasmodium spp. by PCR, India, 2014. Emerg Infect Dis. 2015;21(10):1853–7.

    PubMed 
    PubMed Central 

    Google Scholar 

  • World Health Organization. Guidelines for the treatment of malaria. Third edition. 2015. https://www.who.int/malaria/publications/atoz/9789241549127/en/.

  • National Centre for Vector Borne disease control Programme. Diagnosis and treatment of malaria. https://ncvbdc.mohfw.gov.in/Doc/Diagnosis-Treatment-Malaria-2013.pdf.

  • Barker KR, Lu Z, Kim H, Zheng Y, Chen J, Conroy AL, Hawkes M, Cheng HS, Njock MS, Fish JE, et al. MiR-155 modifies inflammation, endothelial activation and blood-brain barrier dysfunction in cerebral malaria. Mol Med. 2017;23:24–33.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cohen A, Zinger A, Tiberti N, Grau GER, Combes V. Differential plasma microvesicle and brain profiles of microRNA in experimental cerebral malaria. Malar J. 2018;17(1):192.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gupta H, Rubio M, Sitoe A, Varo R, Cistero P, Madrid L, Cuamba I, Jimenez A, Martianez-Vendrell X, Barrios D, et al. Plasma microRNA profiling of Plasmodium falciparum biomass and association with severity of malaria disease. Emerg Infect Dis. 2021;27(2):430–42.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gupta H, Sahu PK, Pattnaik R, Mohanty A, Majhi M, Mohanty AK, Pirpamer L, Hoffmann A, Mohanty S, Wassmer SC. Plasma levels of hsa-miR-3158-3p microrna on admission correlate with MRI findings and predict outcome in cerebral malaria. Clin Transl Med. 2021;11(6):e396.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Paladini L, Fabris L, Bottai G, Raschioni C, Calin GA, Santarpia L. Targeting microRNAs as key modulators of tumor immune response. J Exp Clin Cancer Res. 2016;35:103.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Marabita F, de Candia P, Torri A, Tegner J, Abrignani S, Rossi RL. Normalization of circulating microrna expression data obtained by quantitative real-time RT-PCR. Brief Bioinform. 2016;17(2):204–12.

    PubMed 

    Google Scholar 

  • Paul P, Chakraborty A, Sarkar D, Langthasa M, Rahman M, Bari M, Singha RS, Malakar AK, Chakraborty S. Interplay between miRNAs and human diseases. J Cell Physiol. 2018;233(3):2007–18.

    PubMed 

    Google Scholar 

  • Chamnanchanunt S, Fucharoen S, Umemura T. Circulating microRNAs in malaria infection: bench to bedside. Malar J. 2017;16(1):334.

    PubMed 
    PubMed Central 

    Google Scholar 

  • El-Assaad F, Hempel C, Combes V, Mitchell AJ, Ball HJ, Kurtzhals JA, Hunt NH, Mathys JM, Grau GE. Differential microRNA expression in experimental cerebral and noncerebral malaria. Infect Immun. 2011;79(6):2379–84.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin-Alonso A, Cohen A, Quispe-Ricalde MA, Foronda P, Benito A, Berzosa P, Valladares B, Grau GE. Differentially expressed microRNAs in experimental cerebral malaria and their involvement in endocytosis, adherens junctions, FoxO and TGF-beta signalling pathways. Sci Rep. 2018;8(1):11277.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chamnanchanunt S, Kuroki C, Desakorn V, Enomoto M, Thanachartwet V, Sahassananda D, Sattabongkot J, Jenwithisuk R, Fucharoen S, Svasti S, et al. Downregulation of plasma miR-451 and miR-16 in Plasmodium vivax infection. Exp Parasitol. 2015;155:19–25.

    PubMed 

    Google Scholar 

  • Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C, Rheinheimer S, Meder B, Stahler C, Meese E, et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016;44(8):3865–77.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cardone J, Le Friec G, Vantourout P, Roberts A, Fuchs A, Jackson I, Suddason T, Lord G, Atkinson JP, Cope A, et al. Complement regulator CD46 temporally regulates cytokine production by conventional and unconventional T cells. Nat Immunol. 2010;11(9):862–71.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rowe JA, Claessens A, Corrigan RA, Arman M. Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert Rev Mol Med. 2009;11:e16.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tripathi AK, Sha W, Shulaev V, Stins MF, Sullivan DJ Jr. Plasmodium falciparum-infected erythrocytes induce NF-kappaB regulated inflammatory pathways in human cerebral endothelium. Blood. 2009;114(19):4243–52.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen M, Shen C, Zhang Y, Shu H. Microrna-150 attenuates hypoxia-induced excessive proliferation and migration of pulmonary arterial smooth muscle cells through reducing HIF-1alpha expression. Biomed Pharmacother. 2017;93:861–8.

    PubMed 

    Google Scholar 

  • Yu ZY, Bai YN, Luo LX, Wu H, Zeng Y. Expression of microRNA-150 targeting vascular endothelial growth factor-A is downregulated under hypoxia during liver regeneration. Mol Med Rep. 2013;8(1):287–93.

    PubMed 

    Google Scholar 

  • Li L, Jiang D. Hypoxia-responsive miRNA-21-5p inhibits Runx2 suppression by targeting SMAD7 in MC3T3-E1 cells. J Cell Biochem. 2019;120(10):16867–75.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Torrez Dulgeroff LB, Oakley MS, Tal MC, Yiu YY, He JQ, Shoham M, Majam V, Okoth WA, Malla P, Kumar S, et al. CD47 blockade reduces the pathologic features of experimental cerebral malaria and promotes survival of hosts with Plasmodium infection. Proc Natl Acad Sci U S A. 2021;118(11):e1907653118. https://doi.org/10.1073/pnas.1907653118.

  • Hamilton F, Mitchell RE, Constantinescu A, Hughes D, Cunnington A, Ghazal P, Timpson NJ. The effect of interleukin-6 signaling on severe malaria: a Mendelian randomization analysis. Int J Infect Dis. 2023;129:251–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wassmer SC, de Souza JB, Frere C, Candal FJ, Juhan-Vague I, Grau GE. TGF-beta1 released from activated platelets can induce TNF-stimulated human brain endothelium apoptosis: a new mechanism for microvascular lesion during cerebral malaria. J Immunol. 2006;176(2):1180–4.

    PubMed 

    Google Scholar 

  • Feng J, Li A, Deng J, Yang Y, Dang L, Ye Y, Li Y, Zhang W. Mir-21 attenuates lipopolysaccharide-induced lipid accumulation and inflammatory response: potential role in cerebrovascular disease. Lipids Health Dis. 2014;13:27.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O’Leary JJ, Ruan Q, Johnson DS, Chen Y, O’Neill LA. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol. 2010;11(2):141–7.

    PubMed 

    Google Scholar 

  • Tahamtan A, Teymoori-Rad M, Nakstad B, Salimi V. Anti-inflammatory microRNAs and their potential for inflammatory diseases treatment. Front Immunol. 2018;9:1377.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sornsenee P, Wilairatana P, Kotepui KU, Masangkay FR, Romyasamit C, Kotepui M. Relation between increased IL-10 levels and malaria severity: a systematic review and meta-analysis. Trop Med Infect Dis. 2023;8(1):35. https://doi.org/10.3390/tropicalmed8010035.

  • Kim N, Kim M, Yun S, Doh J, Greenberg PD, Kim TD, Choi I. Microrna-150 regulates the cytotoxicity of natural killers by targeting perforin-1. J Allergy Clin Immunol. 2014;134(1):195–203.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Burrack KS, Hart GT, Hamilton SE. Contributions of natural killer cells to the immune response against Plasmodium. Malar J. 2019;18(1):321.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Riggle BA, Manglani M, Maric D, Johnson KR, Lee MH, Neto OLA, Taylor TE, Seydel KB, Nath A, Miller LH, et al. CD8+ T cells target cerebrovasculature in children with cerebral malaria. J Clin Invest. 2020;130(3):1128–38.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Moebius J, Guha R, Peterson M, Abdi K, Skinner J, Li S, Arora G, Traore B, Rajagopalan S, Long EO, et al. PD-1 Expression on NK cells in malaria-exposed individuals is associated with diminished natural cytotoxicity and enhanced antibody-dependent cellular cytotoxicity. Infect Immun. 2020;88(3):e00711-19. https://doi.org/10.1128/IAI.00711-19.

  • Tiedt S, Prestel M, Malik R, Schieferdecker N, Duering M, Kautzky V, Stoycheva I, Bock J, Northoff BH, Klein M, et al. RNA-Seq identifies circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as potential biomarkers for acute ischemic stroke. Circ Res. 2017;121(8):970–80.

    PubMed 

    Google Scholar 

  • Pallares-Albanell J, Zomeno-Abellan MT, Escaramis G, Pantano L, Soriano A, Segura MF, Marti E. A high-throughput screening identifies microRNA inhibitors that influence neuronal maintenance and/or response to oxidative stress. Mol Ther Nucleic Acids. 2019;17:374–87.

    PubMed 
    PubMed Central 

    Google Scholar 

  • McGarry T, Biniecka M, Veale DJ, Fearon U. Hypoxia, oxidative stress and inflammation. Free Radic Biol Med. 2018;125:15–24.

    PubMed 

    Google Scholar 

  • Li L, Zhu D, Huang L, Zhang J, Bian Z, Chen X, Liu Y, Zhang CY, Zen K. Argonaute 2 complexes selectively protect the circulating microRNAs in cell-secreted microvesicles. PLoS ONE. 2012;7(10):e46957.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Continue Reading