Oh, J. H., Park, M. S. & Rhee, S. M. Treatment strategy for irreparable rotator cuff tears. Clin. Orthop. Surg. 10 (2), 119–134. https://doi.org/10.4055/cios.2018.10.2.119 (2018).
Google Scholar
Castricini, R., De Benedetto, M., Gervasi, E. & Castagna, A. Irreparable rotator cuff tears: a novel classification system. Musculoskelet. Surg. 98 (1), 49–53. https://doi.org/10.1007/s12306-014-0320-5 (2015).
Google Scholar
Yamamoto, A. et al. Prevalence and risk factors of a rotator cuff tear in the general population. J. Shoulder Elb. Surg. 19 (1), 116–120. https://doi.org/10.1016/j.jse.2009.04.006 (2019).
Google Scholar
Mirzaee, F., Aslani, M. A., Zafarani, Z. & Aslani, H. Treatment of massive irreparable rotator cuff tear with arthroscopic subacromial bursectomy, biceps tenotomy, and tuberoplasty. Arch. Bone Jt. Surg. 7 (3), 263–268 (2019).
Google Scholar
Davies, A., Singh, P., Reilly, P., Sabharwal, S. & Malhas, A. Superior capsule reconstruction, partial cuff repair, graft interposition, arthroscopic debridement or balloon spacers for large and massive irreparable rotator cuff tears: a systematic review and meta-analysis. J. Orthop. Surg. Res. 17 (1), 552. https://doi.org/10.1186/s13018-022-03411-y (2022).
Google Scholar
Thangarajah, T., Tsuchiya, S., Lukenchuk, J. & Lo, I. K. Arthroscopic revision rotator cuff repair of large and massive retears using an interpositional bridging dermal allograft. JSES Int. 6 (4), 643–648. https://doi.org/10.1016/j.jseint.2022.02.010 (2022).
Google Scholar
Cartucho, A. Tendon transfers for massive rotator cuff tears. EFORT Open. Rev. 7 (6), 404–413. https://doi.org/10.1530/EOR-22-0023 (2022).
Google Scholar
Preuss, F. R., Day, H. K., Peebles, A. M., Mologne, M. S. & Provencher, M. T. Reverse total shoulder arthroplasty for treatment of massive, irreparable rotator cuff tear. Arthrosc. Tech. 11 (6), e1133–e1139. https://doi.org/10.1016/j.eats.2022.02.022 (2022).
Google Scholar
Mihata, T., McGarry, M. H., Pirolo, J. M., Kinoshita, M. & Lee, T. Q. Superior capsule reconstruction to restore superior stability in irreparable rotator cuff tears: a Biomechanical cadaveric study. Am. J. Sports Med. 40 (10), 2248–2255. https://doi.org/10.1177/0363546512456195 (2012).
Google Scholar
Burkhart, S. S. Superior capsule reconstruction. Instr Course Lect. 67, 433–438 (2018).
Google Scholar
Mihata, T. et al. Arthroscopic superior capsule reconstruction for irreparable rotator cuff tears: comparison of clinical outcomes with and without subscapularis tear. Am. J. Sports Med. 48 (14), 3429–3438. https://doi.org/10.1177/0363546520965993 (2020).
Google Scholar
Ma, L. et al. Supraspinatus tendon reconstruction using fascia Lata autograft for irreparable posterosuperior massive rotator cuff tears. Arthrosc. Tech. 12 (5), e629–e634. https://doi.org/10.1016/j.eats.2022.12.019 (2023).
Google Scholar
Liao, Y., Zhou, Z., Wang, J., Li, H. & Zhou, B. Fascia Lata autografts achieve interface healing with the supraspinatus muscle histologically and mechanically in a rat supraspinatus tendon reconstruction model for massive irreparable rotator cuff tears. Arthroscopy 40 (11), 2655–2666. https://doi.org/10.1016/j.arthro.2024.02.048 (2024).
Google Scholar
Adams, C. R., DeMartino, A. M., Rego, G., Denard, P. J. & Burkhart, S. S. The rotator cuff and the superior capsule. Why We Need both Arthrosc. 32 (12), 2628–2637. https://doi.org/10.1016/j.arthro.2016.08.011 (2016).
Google Scholar
Wong, I., Burns, J. & Snyder, S. Arthroscopic graftjacket repair of rotator cuff tears. J. Shoulder Elb. Surg. 19 (2 Suppl), 104–109. https://doi.org/10.1016/j.jse.2009.12.017 (2010).
Google Scholar
Liao, Y. et al. Supraspinatus tendon reconstruction versus the bridging technique in a rat model: histological, biomechanical, and functional outcomes. Am. J. Sports Med. 52 (10), 2628–2638. https://doi.org/10.1177/03635465241264805 (2024).
Google Scholar
Pandey, V. & Jaap Willems, W. Rotator cuff tear: A detailed update. Asia Pac. J. Sports Med. Arthrosc. Rehabil Technol. 2, 1–14. https://doi.org/10.1016/j.asmart.2014.11.003 (2015).
Google Scholar
Mihata, T. et al. Clinical results of arthroscopic superior capsule reconstruction for irreparable rotator cuff tears. Arthroscopy 29 (3), 459–470. https://doi.org/10.1016/j.arthro.2012.10.022 (2013).
Google Scholar
Li, H. et al. Dynamic superior capsular reconstruction for irreparable massive rotator cuff tears: histologic analysis in a rat model and Short-term clinical evaluation. Am. J. Sports Med. 51 (5), 1255–1266. https://doi.org/10.1177/03635465231156619 (2023).
Google Scholar
Li, H. et al. The short-term effectiveness of superior capsular reconstruction using autologous fascia Lata graft for irreparable massive rotator cuff tears (in Chinese). Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 35 (11), 1427–1433. https://doi.org/10.7507/1002-1892.202104003 (2021).
Google Scholar
Sugaya, H., Maeda, K., Matsuki, K. & Moriishi, J. Functional and structural outcome after arthroscopic full-thickness rotator cuff repair: single-row versus dual-row fixation. Arthroscopy 21 (11), 1307–1316. https://doi.org/10.1016/j.arthro.2005.08.011 (2005).
Google Scholar
Liao, Y-T., Zhou, B-H. & Mihata, T. Superior capsule reconstruction: anatomy, biomechanics, indications, and graft treatment. Chin. Med. J. (Engl). 134 (23), 2847–2849. https://doi.org/10.1097/CM9.0000000000001849 (2021).
Google Scholar
Goutallier, D., Postel, J-M., Gleyze, P., Leguilloux, P. & Driessche, S. V. Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears. J. Shoulder Elb. Surg. 12 (6), 550–554. https://doi.org/10.1016/s1058-2746(03)00211-8 (2023).
Google Scholar
Goutallier, D., Postel, J-M., Radier, C., Bernageau, J. & Zilber, S. Long-term functional and structural outcome in patients with intact repairs 1 year after open transosseous rotator cuff repair. J. Shoulder Elb. Surg. 18 (4), 521–528. https://doi.org/10.1016/j.jse.2008.11.006 (2009).
Google Scholar
Hamano, N. et al. Does successful rotator cuff repair improve muscle atrophy and fatty infiltration of the rotator cuff? A retrospective magnetic resonance imaging study performed shortly after surgery as a reference. J. Shoulder Elb. Surg. 26, 967–974. https://doi.org/10.1016/j.jse.2016.10.016 (2017).
Google Scholar
Yu, X-K. et al. The correlation between types of posterior upper rotator cuff tears and intramuscular fat infiltration based on magnetic resonance imaging: A retrospective observational study. Front. Bioeng. Biotechnol. 10, 859174. https://doi.org/10.3389/fbioe.2022.859174 (2022).
Google Scholar
Wieser, K. et al. Changes of supraspinatus muscle volume and fat fraction after successful or failed arthroscopic rotator cuff repair. Am. J. Sports Med. 47 (13), 3080–3088. https://doi.org/10.1177/0363546519876289 (2019).
Google Scholar
Yuri, T. et al. Influence of fat infiltration, tear size, and post-operative tendon integrity on muscle contractility of repaired supraspinatus muscle. Eur. J. Orthop. Surg. Traumatol. 32 (5), 837–843. https://doi.org/10.1007/s00590-021-03020-1 (2022).
Google Scholar
Feeley, B. T. et al. Human rotator cuff tears have an endogenous, inducible stem cell source capable of improving muscle quality and function after rotator cuff repair. Am. J. Sports Med. 48 (11), 2660–2668. https://doi.org/10.1177/0363546520935855 (2020).
Google Scholar
Schubert, M. F., Noah, A. C., Bedi, A., Gumucio, J. P. & Mendias, C. L. Reduced myogenic and increased adipogenic differentiation capacity of rotator cuff muscle stem cells. J. Bone Joint Surg. Am. 101 (3), 228–238. https://doi.org/10.2106/JBJS.18.00509 (2019).
Google Scholar
Cipollaro, L., Sahemey, R., Oliva, F. & Maffulli, N. Immunohistochemical features of rotator cuff tendinopathy. Br. Med. Bull. 130 (1), 105–123. https://doi.org/10.1093/bmb/ldz016 (2019).
Google Scholar
Yoon, J. P., Park, S-J., Kim, D-H. & Chung, S. W. Metformin increases the expression of Proinflammatory cytokines and inhibits supraspinatus fatty infiltration. J. Orthop. Surg. Res. 18 (1), 674. https://doi.org/10.1186/s13018-023-04163-z (2023).
Google Scholar
Lee, Y-S., Kim, J-Y., Kim, K. I., Ki, S-Y. & Chung, S. W. Effect of fatty Acid-Binding protein 4 Inhibition on rotator cuff muscle quality: histological, biomechanical, and biomolecular analysis. Am. J. Sports Med. 47 (13), 3089–3099. https://doi.org/10.1177/0363546519873856 (2019).
Google Scholar
Shirasawa, H. et al. Retinoic acid receptor agonists suppress muscle fatty infiltration in mice. Am. J. Sports Med. 49 (2), 332–339. https://doi.org/10.1177/0363546520984122 (2021).
Google Scholar
Gumucio, J. P. et al. Reduced mitochondrial lipid oxidation leads to fat accumulation in myosteatosis. FASEB J. 33 (7), 7863–7881. https://doi.org/10.1096/fj.201802457RR (2019).
Google Scholar
Lee, C. et al. Beige faps transplantation improves muscle quality and shoulder function after massive rotator cuff tears. J. Orthop. Res. 38 (5), 1159–1166. https://doi.org/10.1002/jor.24558 (2020).
Google Scholar
Liao, Y-T. et al. Revascularization character of autologous fascia Lata graft following shoulder superior capsule reconstruction by enhanced magnetic resonance imaging. J. Orthop. Surg. Res. 17 (1), 485. https://doi.org/10.1186/s13018-022-03375-z (2022).
Google Scholar