Human dexterity and brains evolved hand in hand

  • Heldstab, S. A. et al. Manipulation complexity in primates coevolved with brain size and terrestriality. Sci. Rep. 6, 24528 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kivell, T. L. Evidence in hand: recent discoveries and the early evolution of human manual manipulation. Philosoph. Transac. Royal Soc. B: Biol. Sci. 370, https://doi.org/10.1098/rstb.2015.0105 (2015).

  • Roach, N. T., Venkadesan, M., Rainbow, M. J. & Lieberman, D. E. Elastic energy storage in the shoulder and the evolution of high-speed throwing in Homo. Nature 498, 483–486 http://www.nature.com/nature/journal/v498/n7455/abs/nature12267.html#supplementary-information (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karakostis, F. A. et al. Biomechanics of the human thumb and the evolution of dexterity. Curr. Biol. 31, 1317–1325.e1318 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iwaniuk, A. N., Pellis, S. M. & Whishaw, I. Q. Brain size is not correlated with forelimb dexterity in fissiped carnivores (Carnivora): a comparative test of the principle of proper mass. Brain Behav. Evolution 54, 167–180 (1999).

    CAS 

    Google Scholar 

  • Toth, N., Schick, K. D., Savage-Rumbaugh, E. S., Sevcik, R. A. & Rumbaugh, D. M. Pan the tool-maker: investigations into the stone tool-making and tool-using capabilities of a bonobo (Pan paniscus). J. Archaeological Sci. 20, 81–91 (1993).

    Google Scholar 

  • Cunningham, C. L., Anderson, J. R. & Mootnick, A. R. Object manipulation to obtain a food reward in hoolock gibbons, Bunopithecus hoolock. Anim. Behav. 71, 621–629 (2006).

    Google Scholar 

  • Byrne, R. W., Corp, N. & Byrne, J. M. Manual dexterity in the gorilla: bimanual and digit role differentiation in a natural task. Anim. Cognition 4, 347–361 (2001).

    CAS 

    Google Scholar 

  • van Schaik, C. P., Fox, E. A. & Fechtman, L. T. Individual variation in the rate of use of tree-hole tools among wild orang-utans: implications for hominin evolution. J. Hum. evolution 44, 11–23 (2003).

    Google Scholar 

  • Ottoni, E. B. & Izar, P. Capuchin monkey tool use: Overview and implications. Evolut. Anthropol.: Issues, N., Rev. 17, 171–178 (2008).

    Google Scholar 

  • Lefebvre, L. Brains, innovations, tools and cultural transmission in birds, non-human primates, and fossil hominins. Front. Hum. Neurosci. 7, 245 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Reader, S. M. & Laland, K. N. Social intelligence, innovation, and enhanced brain size in primates. Proc. Natl Acad. Sci. 99, 4436–4441 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iwaniuk, A. N., Lefebvre, L. & Wylie, D. R. The comparative approach and brain–behaviour relationships: A tool for understanding tool use. Can. J. Exp. Psychol./Rev. canadienne de. psychologie expérimentale 63, 150 (2009).

    Google Scholar 

  • Parker, S. T. & Gibson, K. R. Object manipulation, tool use and sensorimotor intelligence as feeding adaptations in Cebus monkeys and great apes. J. Hum. Evolution 6, 623–641 (1977).

    Google Scholar 

  • Melin, A. D., Young, H. C., Mosdossy, K. N. & Fedigan, L. M. Seasonality, extractive foraging and the evolution of primate sensorimotor intelligence. J. Hum. Evolution 71, 77–86 (2014).

    Google Scholar 

  • Heldstab, S. A., Isler, K., Schuppli, C. & van Schaik, C. P. When ontogeny recapitulates phylogeny: Fixed neurodevelopmental sequence of manipulative skills among primates. Sci. Adv. 6, eabb4685 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Marzke, M. W. Tool making, hand morphology and fossil hominins. Philosoph. Transac. Royal Soc. B: Biol. Sci. 368, https://doi.org/10.1098/rstb.2012.0414 (2013).

  • Marzke, M. W. Precision grips, hand morphology, and tools. Am. J. Phys. Anthropol. 102, 91–110 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Almécija, S., Wallace, I. J., Judex, S., Alba, D. M. & Moyà-Solà, S. Comment on “Human-like hand use in Australopithecus africanus. Science 348, 1101 (2015).

    PubMed 

    Google Scholar 

  • Bardo, A., Vigouroux, L., Kivell, T. L. & Pouydebat, E. The impact of hand proportions on tool grip abilities in humans, great apes and fossil hominins: A biomechanical analysis using musculoskeletal simulation. J. Hum. Evolution 125, 106–121 (2018).

    Google Scholar 

  • Pouydebat, E., Laurin, M., Gorce, P. & Bels, V. Evolution of grasping among anthropoids. J. Evolut. Biol. 21, 1732–1743 (2008).

    CAS 

    Google Scholar 

  • Melin, A. D. et al. Anatomy and dietary specialization influence sensory behaviour among sympatric primates. Proc. R. Soc. B: Biol. Sci. 289, 20220847 (2022).

    Google Scholar 

  • Feix, T., Kivell, T. L., Pouydebat, E. & Dollar, A. M. Estimating thumb–index finger precision grip and manipulation potential in extant and fossil primates. J. Royal Soc. Interface 12, https://doi.org/10.1098/rsif.2015.0176 (2015).

  • Napier, J. The evolution of the hand. Sci. Am. 207, 56–65 (1962).

    CAS 
    PubMed 

    Google Scholar 

  • Kivell, T. L., Kibii, J. M., Churchill, S. E., Schmid, P. & Berger, L. R. Australopithecus sediba hand demonstrates mosaic evolution of locomotor and manipulative abilities. Science 333, 1411–1417 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Almécija, S., Smaers, J. B. & Jungers, W. L. The evolution of human and ape hand proportions. Nat. Commun. 6, https://doi.org/10.1038/ncomms8717 (2015).

  • Almécija, S., Moyà-Solà, S. & Alba, D. M. Early origin for human-like precision grasping: A comparative study of pollical distal phalanges in fossil hominins. PLoS ONE 5, e11727 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Venditti, C., Baker, J. & Barton, R. A. Co-evolutionary dynamics of mammalian brain and body size. Nat. Ecol. Evolution 8, 1534–1542 (2024).

    Google Scholar 

  • Susman, R. L. Fossil evidence for early hominid tool use. Science 265, 1570–1573 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Organ, C., Nunn, C. L., Machanda, Z. & Wrangham, R. W. Phylogenetic rate shifts in feeding time during the evolution of Homo. Proc. Natl Acad. Sci. USA 108, 14555–14559 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Organ, C. L., Shedlock, A. M., Meade, A., Pagel, M. & Edwards, S. V. Origin of avian genome size and structure in non-avian dinosaurs. Nature 446, 180–184 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Bentley-Condit, V. Animal tool use: current definitions and an updated comprehensive catalog. Behaviour 147, 185–132A (2010).

    Google Scholar 

  • St Amant, R. & Horton, T. E. Revisiting the definition of animal tool use. Anim. Behav. 75, 1199–1208 (2008).

    Google Scholar 

  • Shumaker, R. W., Walkup, K. R. & Beck, B. B. Animal tool behavior: the use and manufacture of tools by animals. (JHU Press, 2011).

  • Beck, B. B. Animal tool behavior: The use and manufacture of tools by animals. (No Title) (1980).

  • Skinner, M. M. et al. Human-like hand use in Australopithecus africanus. Science 347, 395–399 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Şahin, F., Atalay, N. Ş, Akkaya, N. & Aksoy, S. Factors affecting the results of the functional dexterity test. J. Hand Ther. 30, 74–79 (2017).

    PubMed 

    Google Scholar 

  • Aaron, D. H. & Jansen, C. W. S. Development of the Functional Dexterity Test (FDT): construction, validity, reliability, and normative data. J. Hand Ther. 16, 12–21 (2003).

    PubMed 

    Google Scholar 

  • Orland, M. D. et al. Hand size affects branching of the deep ulnar nerve and deep palmar arch. Surgical Radiologic Anat. 44, 1501–1505 (2022).

    Google Scholar 

  • Moyà-Solà, S., Köhler, M. & Rook, L. Evidence of hominid-like precision grip capability in the hand of the Miocene ape Oreopithecus. Proc. Natl Acad. Sci. USA 96, 313–317 (1999).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Key, A. J., Dunmore, C. J. & Marzke, M. W. The unexpected importance of the fifth digit during stone tool production. Sci. Rep. 9, 16724 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kunze, J. Functional adaptations and muscle attachment (entheseal) patterns in the hands of apes, humans, and hominins, Universität Tübingen, (2024).

  • Domalain, M., Bertin, A. & Daver, G. Was Australopithecus afarensis able to make the Lomekwian stone tools? Towards a realistic biomechanical simulation of hand force capability in fossil hominins and new insights on the role of the fifth digit. Comptes Rendus Palevol 16, 572–584 (2017).

    Google Scholar 

  • Powell, L. E., Isler, K. & Barton, R. A. Re-evaluating the link between brain size and behavioural ecology in primates. Proc. R. Soc. B: Biol. Sci. 284, 20171765 (2017).

    Google Scholar 

  • Tsegai, Z. J. et al. Trabecular bone structure correlates with hand posture and use in hominoids. PLoS ONE 8, e78781 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bardo, A. et al. The implications of thumb movements for Neanderthal and modern human manipulation. Sci. Rep. 10, 19323 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kunze, J., Harvati, K., Hotz, G. & Karakostis, F. A. Humanlike manual activities in Australopithecus. J. Hum. Evolution 196, 103591 (2024).

    Google Scholar 

  • Karakostis, F. A. et al. Biocultural evidence of precise manual activities in an Early Holocene individual of the high-altitude Peruvian Andes. Am. J. Phys. Anthropol. 174, 35–48 (2021).

    PubMed 

    Google Scholar 

  • Synek, A. et al. Musculoskeletal models of a human and bonobo finger: parameter identification and comparison to in vitro experiments. PeerJ 7, e7470 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Püschel, T. A., Nicholson, S. L., Baker, J., Barton, R. A. & Venditti, C. Hominin brain size increase has emerged from within-species encephalization. Proc. Natl Acad. Sci., USA 121, e2409542121 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Alba, D. M., Moyà-Solà, S. & Köhler, M. Morphological affinities of the Australopithecus afarensis hand on the basis of manual proportions and relative thumb length. J. Hum. Evolution 44, 225–254 (2003).

    Google Scholar 

  • Skinner, M. M. et al. Response to Comment on “Human-like hand use in Australopithecus africanus. Science 348, 1101 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Susman, R. Hand of Paranthropus robustus from Member 1, Swartkrans: fossil evidence for tool behavior. Science 240, 781–784 (1988).

    CAS 
    PubMed 

    Google Scholar 

  • Almécija, S. & Alba, D. M. On manual proportions and pad-to-pad precision grasping in Australopithecus afarensis. J. Hum. Evol. 73, 88–92 (2014).

    PubMed 

    Google Scholar 

  • Rolian, C. & Gordon, A. D. Reassessing manual proportions in Australopithecus afarensis. Am. J. Phys. Anthropol. 152, 393–406 (2013).

    PubMed 

    Google Scholar 

  • Falk, D. et al. The brain of LB1, Homo floresiensis. Science 308, 242–245 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Martin, R. D. et al. Comment on “The brain of LB1, Homo floresiensis. Science 312, 999 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Kivell, T. L. et al. The hand of Homo naledi. Nat. Commun. 6, https://doi.org/10.1038/ncomms9431 (2015).

  • Garvin, H. M. et al. Body size, brain size, and sexual dimorphism in Homo naledi from the Dinaledi Chamber. J. Hum. Evolution 111, 119–138 (2017).

    Google Scholar 

  • Syeda, S. M. et al. Phalangeal cortical bone distribution reveals different dexterous and climbing behaviors in Australopithecus sediba and Homo naledi. Sci. Adv. 11, eadt1201 (2025).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Syeda, S. M. et al. Conference abstract: PaleoAnthropology, (2021).

  • Dunmore, C. J. et al. The position of Australopithecus sediba within fossil hominin hand use diversity. Nat. Ecol. Evolution 4, 911–918 (2020).

    Google Scholar 

  • Kivell, T. L., Churchill, S. E., Kibii, J. M., Schmid, P. & Berger, L. R. The hand of Australopithecus sediba. PaleoAnthropology, 282-333 (2018).

  • Melchionna, M. et al. Cortical areas associated to higher cognition drove primate brain evolution. Commun. Biol. 8, 80 (2025).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Melchionna, M. et al. From smart apes to human brain boxes. A uniquely derived brain shape in late hominins clade. Front. Earth Sci. 8, 273 (2020).

    Google Scholar 

  • Sansalone, G. et al. Homo sapiens and Neanderthals share high cerebral cortex integration into adulthood. Nat. Ecol. Evolution 7, 42–50 (2023).

    Google Scholar 

  • Alatorre Warren, J. L., Ponce de León, M. S., Hopkins, W. D. & Zollikofer, C. P. Evidence for independent brain and neurocranial reorganization during hominin evolution. Proc. Natl Acad. Sci. 116, 22115–22121 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smaers, J. B. & Soligo, C. Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution. Proc. R. Soc. B: Biol. Sci. 280, 20130269 (2013).

    CAS 

    Google Scholar 

  • Affinito, S., Eteson, B., Cáceres, L. T., Moos, E. T. & Karakostis, F. A. Exploring the cognitive underpinnings of early hominin stone tool use through an experimental EEG approach. Sci. Rep. 14, 26936 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stout, D. & Chaminade, T. Stone tools, language and the brain in human evolution. Philos. Trans. R. Soc. B: Biol. Sci. 367, 75–87 (2012).

    Google Scholar 

  • Barton, R. A. Embodied cognitive evolution and the cerebellum. Philos. Trans. R. Soc. B: Biol. Sci. 367, 2097–2107 (2012).

    Google Scholar 

  • Leggio, M. & Molinari, M. Cerebellar sequencing: a trick for predicting the future. Cerebellum 14, 35–38 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Barton, R. A. & Venditti, C. Rapid evolution of the cerebellum in humans and other great apes. Curr. Biol. 24, 2440–2444 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • DeCasien, A. R. & Higham, J. P. Primate mosaic brain evolution reflects selection on sensory and cognitive specialization. Nat. Ecol. Evolution 3, 1483–1493 (2019).

    Google Scholar 

  • Kulik, V., Reyes, L. D. & Sherwood, C. C. Coevolution of language and tools in the human brain: An ALE meta-analysis of neural activation during syntactic processing and tool use. Prog. Brain Res. 275, 93–115 (2023).

    PubMed 

    Google Scholar 

  • Bruner, E., Amano, H., Pereira-Pedro, A. S. & Ogihara, N. The Evolution of the Parietal Lobes in the Genus Homo. In Digital Endocasts. Replacement of Neanderthals by Modern Humans Series (eds Bruner, E., Ogihara, N. & Tanabe, H.) (Springer, 2018).

  • Maddaluno, O. et al. Encoding manual dexterity through modulation of intrinsic alpha band connectivity. J. Neurosci. 44, e1766232024 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B. & Taub, E. Increased cortical representation of the fingers of the left hand in string players. Science 270, 305–307 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Amunts, K. et al. Motor cortex and hand motor skills: structural compliance in the human brain. Hum. Brain Mapp. 5, 206–215 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Sobinov, A. R. & Bensmaia, S. J. The neural mechanisms of manual dexterity. Nat. Rev. Neurosci. 22, 741–757 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Stout, D. & Chaminade, T. The evolutionary neuroscience of tool making. Neuropsychologia 45, 1091–1100 (2007).

    PubMed 

    Google Scholar 

  • de Jager, E. J., Risser, L., Mescam, M., Fonta, C. & Beaudet, A. Sulci 3D mapping from human cranial endocasts: A powerful tool to study hominin brain evolution. Hum. Brain Mapp. 43, 4433–4443 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ponce de León, M. S. et al. The primitive brain of early Homo. Science 372, 165–171 (2021).

    PubMed 

    Google Scholar 

  • Tobias, P. V. The brain of Homo habilis: A new level of organization in cerebral evolution. J. Hum. Evolution 16, 741–761 (1987).

    Google Scholar 

  • Healy, S. D. & Rowe, C. A critique of comparative studies of brain size. Proc. R. Soc. B: Biol. Sci. 274, 453–464 (2007).

    Google Scholar 

  • Ellis, R. Bodies and other objects: The sensorimotor foundations of cognition. (Cambridge University Press, 2018).

  • Barton, R. A. & Barrett, L. Embodied cognitive evolution and the limits of convergence. Philosoph. Transac. Royal Soc. B: Biol. Sci. (2025).

  • Harvey, P. H. & Pagel, M. The comparative method in evolutionary biology. (Oxford University Press, 1991).

  • Wisniewski, A. L., Lloyd, G. T. & Slater, G. J. Extant species fail to estimate ancestral geographical ranges at older nodes in primate phylogeny. Proc. R. Soc. B: Biol. Sci. 289, 20212535 (2022).

    Google Scholar 

  • Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biol. 10, e1003537 (2014).

    Google Scholar 

  • Avaria-Llautureo, J. et al. The radiation and geographic expansion of primates through diverse climates. Proc. Natl. Acad. Sci. 122, e2423833122 (2025).

  • Kendall, M. & Colijn, C. Mapping phylogenetic trees to reveal distinct patterns of evolution. Mol. Biol. evolution 33, 2735–2743 (2016).

    CAS 

    Google Scholar 

  • Jombart, T., Kendall, M., Almagro-Garcia, J. & Colijn, C. treespace: Statistical exploration of landscapes of phylogenetic trees. Mol. Ecol. Resour. 17, 1385–1392 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2024).

  • Grabowski, M. Bigger brains led to bigger bodies?: The correlated evolution of human brain and body size. Curr. Anthropol. 57, 174–196 (2016).

    Google Scholar 

  • Isler, K. et al. Endocranial volumes of primate species: scaling analyses using a comprehensive and reliable data set. J. Hum. Evolution 55, 967–978 (2008).

    Google Scholar 

  • Stephan, H. Methodische Studien über den quantitativen Vergleich architektonischer Struktureinheiten des Gehirns. Z. wiss. Zool. 164, 143–172 (1960).

    Google Scholar 

  • Burger, J. R., George, M. A. Jr., Leadbetter, C. & Shaikh, F. The allometry of brain size in mammals. J. Mammal. 100, 276–283 (2019).

    Google Scholar 

  • Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Wagner, M. J. & Luo, L. Neocortex–cerebellum circuits for cognitive processing. Trends Neurosci. 43, 42–54 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Continue Reading