Widespread temporal niche partitioning in an adaptive radiation of cichlid fishes

  • Gause, G. F. Experimental analysis of Vito Volterra’s mathematical theory of the struggle for existence. Science 79, 16–17 (1934).

    CAS 
    PubMed 

    Google Scholar 

  • Losos, J. B. Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles (UC Press, 2011).

  • Grant, P. R. & Grant, B. R. How and Why Species Multiply: The Radiation of Darwin’s Finches (Princeton Univ. Press, 2020).

  • Losos, J. B., Warheitt, K. I. & Schoener, T. W. Adaptive differentiation following experimental island colonization in Anolis lizards. Nature 387, 70–73 (1997).

    CAS 

    Google Scholar 

  • Ronco, F. et al. Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature 589, 76–81 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Carothers, J. H. & Jaksić, F. M. Time as a niche difference: the role of interference competition. Oikos 42, 403 (1984).

    Google Scholar 

  • Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).

    Google Scholar 

  • Lear, K. O., Whitney, N. M., Morris, J. J. & Gleiss, A. C. Temporal niche partitioning as a novel mechanism promoting co-existence of sympatric predators in marine systems. Proc. R. Soc. B. 288, 20210816 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakabayashi, M. et al. Temporal activity patterns suggesting niche partitioning of sympatric carnivores in Borneo, Malaysia. Sci. Rep. 11, 19819 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salzburger, W. & Meyer, A. The species flocks of East African cichlid fishes: recent advances in molecular phylogenetics andpopulation genetics. Naturwissenschaften 91, 277–290 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • McGee, M. D. et al. The ecological and genomic basis of explosive adaptive radiation. Nature 586, 75–79 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Salzburger, W. Understanding explosive diversification through cichlid fish genomics. Nat. Rev. Genet. 19, 705–717 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Konings, A. Tanganyika Cichlids in their Natural Habitat (Cichlid Press, 2019).

  • Lloyd, E., Chhouk, B., Conith, A. J., Keene, A. C. & Albertson, R. C. Diversity in rest-activity patterns among Lake Malawi cichlid fishes suggests a novel axis of habitat partitioning. J. Exp. Biol. 224, jeb242186 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pohlmann, K., Atema, J. & Breithaupt, T. The importance of the lateral line in nocturnal predation of piscivorous catfish. J. Exp. Biol. 207, 2971–2978 (2004).

    PubMed 

    Google Scholar 

  • Edgley, D. E. & Genner, M. J. Adaptive diversification of the lateral line system during cichlid fish radiation. iScience 16, 1–11 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Prober, D. A., Rihel, J., Onah, A. A., Sung, R.-J. & Schier, A. F. Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J. Neurosci. 26, 13400–13410 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Villemereuil, P., Gaggiotti, O. E., Mouterde, M. & Till-Bottraud, I. Common garden experiments in the genomic era: new perspectives and opportunities. Heredity 116, 249–254 (2016).

    PubMed 

    Google Scholar 

  • Jaggard, J. B., Lloyd, E., Lopatto, A., Duboue, E. R. & Keene, A. C. Automated measurements of sleep and locomotor activity in Mexican cavefish. J. Vis. Exp. https://doi.org/10.3791/59198 (2019).

    PubMed 

    Google Scholar 

  • Bitsikas, V., Cubizolles, F. & Schier, A. F. A vertebrate family without a functional hypocretin/orexin arousal system. Curr. Biol. 34, 1532–1540 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Yuma, M., Narita, T., Hori, M. & Kondo, T. Food resources of shrimp-eating cichlid fishes in Lake Tanganyika. Environ. Biol. Fishes 52, 371–378 (1998).

    Google Scholar 

  • Eccles, D. H. Is speciation of demersal fishes in Lake Tanganyika restrained by physical limnological conditions? Biol. J. Linn. Soc. 29, 115–122 (1986).

    Google Scholar 

  • Gashagaza, M. M. Feeding activity of a Tanganyikan cichlid fish Lamprologus brichardi. Afr. Stud. Monogr. 9, 1–9 (1988).

    Google Scholar 

  • Desjardins, J. K., Fitzpatrick, J. L., Stiver, K. A., Van Der Kraak, G. J. & Balshine, S. Lunar and diurnal cycles in reproductive physiology and behavior in a natural population of cooperatively breeding fish. J. Zool. 285, 66–73 (2011).

    Google Scholar 

  • Yokogawa, T. et al. Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biol. 5, e277 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhdanova, I. V., Wang, S. Y., Leclair, O. U. & Danilova, N. P. Melatonin promotes sleep-like state in zebrafish. Brain Res. 903, 263–268 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Indermaur, A., Schedel, F. D. B. & Ronco, F. Morphological diversity of the genus Telmatochromis from the Lake Tanganyika drainage with the description of a new riverine species and the generic reassignment of the Malagarasi River lamprologine. J. Fish Biol. 106, 1214–1230 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Siegel, J. M. Sleep function: an evolutionary perspective. Lancet Neurol. 21, 937–946 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Adams, D. C. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst. Biol. 63, 685–697 (2014).

    PubMed 

    Google Scholar 

  • Mitteroecker, P., Collyer, M. L. & Adams, D. C. Exploring phylogenetic signal in multivariate phenotypes by maximizing Blomberg’s K. Syst. Biol. 74, 215–229 (2024).

    PubMed Central 

    Google Scholar 

  • Kirk, E. C. Comparative morphology of the eye in primates. Anat. Rec. 281A, 1095–1103 (2004).

    Google Scholar 

  • Hall, M. I. & Ross, C. F. Eye shape and activity pattern in birds. J. Zool. 271, 437–444 (2007).

    Google Scholar 

  • Schmitz, L. & Motani, R. Morphological differences between the eyeballs of nocturnal and diurnal amniotes revisited from optical perspectives of visual environments. Vision Res. 50, 936–946 (2010).

    PubMed 

    Google Scholar 

  • Schmitz, L. & Wainwright, P. C. Nocturnality constrains morphological and functional diversity in the eyes of reef fishes. BMC Evol. Biol. 11, 338 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Curtis, D. J. & Rasmussen, M. A. The evolution of cathemerality in primates and other mammals: a comparative and chronoecological approach. Folia Primatol. 77, 178–193 (2006).

    CAS 

    Google Scholar 

  • Santini, L., Rojas, D. & Donati, G. Evolving through day and night: origin and diversification of activity pattern in modern primates. Behav. Ecol. 26, 789–796 (2015).

    Google Scholar 

  • Cox, D. T. C. & Gaston, K. J. Cathemerality: a key temporal niche. Biol. Rev. 99, 329–347 (2024).

    PubMed 

    Google Scholar 

  • Price, S. A. et al. Two waves of colonization straddling the K–Pg boundary formed the modern reef fish fauna. Proc. R. Soc. B. 281, 20140321 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sommer-Trembo, C. et al. The genetics of niche-specific behavioral tendencies in an adaptive radiation of cichlid fishes. Science 384, 470–475 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Szkiba, D., Kapun, M., von Haeseler, A. & Gallach, M. SNP2GO: functional analysis of genome-wide association studies. Genetics 197, 285–289 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fischer, R. M. et al. Co-expression of VAL- and TMT-opsins uncovers ancient photosensory interneurons and motorneurons in the vertebrate brain. PLoS Biol. 11, e1001585 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kunst, M. et al. Calcitonin gene-related peptide neurons mediate sleep-specific circadian output in Drosophila. Curr. Biol. 24, 2652–2664 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woods, I. G. et al. Neuropeptidergic signaling partitions arousal behaviors in zebrafish. J. Neurosci. 34, 3142–3160 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Byrne, E. M. et al. A genome-wide association study of sleep habits and insomnia. Am. J. Med. Genet. B: Neuropsychiatr. Genet. 162B, 439–451 (2013).

    PubMed 

    Google Scholar 

  • Parsons, M. J. et al. Replication of genome‐wide association studies (GWAS) loci for sleep in the British G1219 cohort. Am. J. Med. Genet. B: Neuropsychiatr. Genet. 162B, 431–438 (2013).

    PubMed 

    Google Scholar 

  • Prasad, C., Rupar, T. & Prasad, A. N. Pyruvate dehydrogenase deficiency and epilepsy. Brain Dev. 33, 856–865 (2011).

    PubMed 

    Google Scholar 

  • Chander, P., Kennedy, M. J., Winckler, B. & Weick, J. P. Neuron-specific gene 2 (NSG2) encodes an AMPA receptor interacting protein that modulates excitatory neurotransmission. eNeuro https://doi.org/10.1523/ENEURO.0292-18.2018 (2019).

  • Zimmerman, A. J. et al. Knockout of AMPA receptor binding protein neuron-specific gene 2 (NSG2) enhances associative learning and cognitive flexibility. Preprint at bioRxiv https://doi.org/10.1101/2024.02.23.581648 (2024).

  • Funghini, S. et al. Carbamoyl phosphate synthetase 1 deficiency in Italy: clinical and genetic findings in a heterogeneous cohort. Gene 493, 228–234 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Yao, J., Gaffaney, J. D., Kwon, S. E. & Chapman, E. R. Doc2 is a Ca2+ sensor required for asynchronous neurotransmitter release. Cell 147, 666–677 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Courtney, N. A., Briguglio, J. S., Bradberry, M. M., Greer, C. & Chapman, E. R. Excitatory and inhibitory neurons utilize different Ca2+ sensors and sources to regulate spontaneous release. Neuron 98, 977–991 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shafer, M. E. R., Nichols, A. L. A., Schier, A. F. & Salzburger, W. Frequent transitions from night-to-day activity after mass extinctions. Preprint at bioRxiv https://doi.org/10.1101/2023.10.27.564421 (2023).

  • Watabe, R., Tsunoda, H. & Saito, M. U. Evaluating the temporal and spatio-temporal niche partitioning between carnivores by different analytical method in northeastern Japan. Sci. Rep. 12, 11987 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ito, F. & Awasaki, T. Comparative analysis of temperature preference behavior and effects of temperature on daily behavior in 11 Drosophila species. Sci. Rep. 12, 12692 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Joyce, M. et al. Divergent evolution of sleep functions. Preprint at bioRxiv https://doi.org/10.1101/2023.05.27.541573 (2023).

  • Lloyd, E. et al. Ontogeny and social context regulate the circadian activity patterns of Lake Malawi cichlids. J. Comp. Physiol. B 194, 299–313 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Slavenko, A. et al. Evolution of diel activity patterns in skinks (Squamata: Scincidae), the world’s second‐largest family of terrestrial vertebrates. Evolution 76, 1195–1208 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gamble, T., Greenbaum, E., Jackman, T. R. & Bauer, A. M. Into the light: diurnality has evolved multiple times in geckos. Biol. J. Linn. Soc. Lond. 115, 896–910 (2015).

    Google Scholar 

  • Maor, R., Dayan, T., Ferguson-Gow, H. & Jones, K. E. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat. Ecol. Evol. 1, 1889–1895 (2017).

    PubMed 

    Google Scholar 

  • Kautt, A. F. et al. Contrasting signatures of genomic divergence during sympatric speciation. Nature 588, 106–111 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nosil, P., Feder, J. L. & Gompert, Z. How many genetic changes create new species? Science 371, 777–779 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Smale, L., Lee, T. & Nunez, A. A. Mammalian diurnality: some facts and gaps. J. Biol. Rhythms 18, 356–366 (2003).

    PubMed 

    Google Scholar 

  • Challet, E. Minireview: entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148, 5648–5655 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Erkert, H. G. Diurnality and nocturnality in nonhuman primates: comparative chronobiological studies in laboratory and nature. Biol. Rhythm Res. 39, 229–267 (2008).

    Google Scholar 

  • Cohen, R., Kronfeld-Schor, N., Ramanathan, C., Baumgras, A. & Smale, L. The substructure of the suprachiasmatic nucleus: similarities between nocturnal and diurnal spiny mice. Brain Behav. Evol. 75, 9–22 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • van Rosmalen, L. et al. Energy balance drives diurnal and nocturnal brain transcriptome rhythms. Cell Rep. 43, 113951 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramanathan, C., Nunez, A. A. & Smale, L. Daily rhythms in PER1 within and beyond the suprachiasmatic nucleus of female grass rats (Arvicanthis niloticus). Neuroscience 156, 48–58 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Yan, L., Smale, L. & Nunez, A. A. Circadian and photic modulation of daily rhythms in diurnal mammals. Eur. J. Neurosci. 51, 551–566 (2020).

    PubMed 

    Google Scholar 

  • Frøland Steindal, I. A. & Whitmore, D. Circadian clocks in fish—what have we learned so far? Biology 8, 17 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Phillips, A. J. K., Fulcher, B. D., Robinson, P. A. & Klerman, E. B. Mammalian rest/activity patterns explained by physiologically based modeling. PLoS Comput. Biol. 9, e1003213 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rietveld, W. J., Minors, D. S. & Waterhouse, J. M. Circadian rhythms and masking: an overview. Chronobiol. Int. 10, 306–312 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • Levy, O., Dayan, T. & Kronfeld‐Schor, N. The relationship between the golden spiny mouse circadian system and its diurnal activity: an experimental field enclosures and laboratory study. Chronobiol. Int. 24, 599–613 (2007).

    PubMed 

    Google Scholar 

  • Fenn, M. G. P. & Macdonald, D. W. Use of middens by red foxes: risk reverses rhythms of rats. J. Mammal. 76, 130–136 (1995).

    Google Scholar 

  • Lane, J. M. et al. Genome-wide association analyses of sleep disturbance traits identify new loci and highlight shared genetics with neuropsychiatric and metabolic traits. Nat. Genet. 49, 274–281 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Li, H.-T., Viskaitis, P., Bracey, E., Peleg-Raibstein, D. & Burdakov, D. Transient targeting of hypothalamic orexin neurons alleviates seizures in a mouse model of epilepsy. Nat. Commun. 15, 1249 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • A. Klein et al. imageio/imageio: v.2.34.0. Zenodo https://doi.org/10.5281/zenodo.1488561 (2024).

  • Bradski, G. opencv_library. Dr. Dobb’s J. 120, 122–125 (2008).

  • The pandas development team. pandas-dev/pandas: Pandas. Zenodo https://doi.org/10.5281/zenodo.3509134 (2024).

  • Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Google Scholar 

  • Simonov, K. PyYAML (2023).

  • Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  • Moškon, M. CosinorPy: a Python package for cosinor-based rhythmometry. BMC Bioinform. 21, 485 (2020).

    Google Scholar 

  • Waskom, M. seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).

    Google Scholar 

  • Van Der Velden, E. CMasher: scientific colormaps for making accessible, informative and ‘cmashing’ plots. J. Open Source Softw. 5, 2004 (2020).

    Google Scholar 

  • Revell, L. J. phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ 12, e16505 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Baken, E. K., Collyer, M. L., Kaliontzopoulou, A. & Adams, D. C. geomorph v.4.0 and gmShiny: enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods Ecol. Evol. 12, 2355–2363 (2021).

    Google Scholar 

  • Liland, K. H., Mevik, B.-H., Wehrens, R. & Hiemstra, P. pls: partial least squares and principal component regression. R package version 2.8-5 (2024).

  • Adams, D. C., Collyer, M. L., Kaliontzopoulou, A. & Baken, E. K. Geomorph: software for geometric morphometric analyses. R package version 4.0.7 (2024).

  • Pennell, M. W. et al. geiger v.2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinform. 30, 2216–2218 (2014).

    CAS 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinform. 26, 589–595 (2010).

    Google Scholar 

  • Broad Institute. Picard toolkit (2019).

  • Orme, D. et al. caper: comparative analysis of phylogenetics and evolution in R. R package version 1.0.3 (2023).

  • Nichols, A. L. A. et al. Widespread temporal niche partitioning in an adaptive radiation of cichlid fishes. Dryad https://doi.org/10.5061/dryad.j0zpc86sv (2025).

  • Nichols, A. L. A. & Fritschi, L. annnic/cichlid-tracking: widespread temporal niche code. Zenodo https://doi.org/10.5281/zenodo.15691181 (2025).

  • Nichols, A. L. A. & Shafer, M. E. R. annnic/cichlid-analysis: widespread temporal niche code. Zenodo https://doi.org/10.5281/zenodo.15691175 (2025).

  • Shafer, M. E. R. & Abdalla-Wyse, A. maxshafer/cichlid_sleep_gwas: widespread temporal niche GWAS code. Zenodo https://doi.org/10.5281/zenodo.15691606 (2025).

  • Continue Reading