Pei, F. et al. Monitoring the vegetation activity in China using vegetation health indices. Agric. For. Meteorol. 248, 215–227 (2018).
Google Scholar
Horel, Á., Zsigmond, T., Molnár, S., Zagyva, I. & Bakacsi, Z. Long-term soil water content dynamics under different land uses in a small agricultural catchment. J. Hydrology Hydromechanics. 70, 284–294. https://doi.org/10.2478/johh-2022-0015 (2022).
Google Scholar
Li, Y., Ye, W., Wang, M. & Yan, X. Climate change and drought: a risk assessment of crop-yield impacts. Climate Res. 39, 31–46 (2009).
Google Scholar
Palazzi, F., Biddoccu, M., Borgogno Mondino, E. C. & Cavallo, E. Use of remotely sensed data for the evaluation of inter-row cover intensity in vineyards. Remote Sens. 15, 41 (2022).
Google Scholar
Zsigmond, T., Braun, P., Mészáros, J., Waltner, I. & Horel, Á. Investigating plant response to soil characteristics and slope positions in a small catchment. Land 11, 774. https://doi.org/10.3390/land11060774 (2022).
Google Scholar
Boiarskii, B. & Hasegawa, H. Comparison of NDVI and NDRE indices to detect differences in vegetation and chlorophyll content. J. Mech. Contin Math. Sci. 4, 20–29 (2019).
Horel, Á., Cseresnyés, I., Zagyva, I. & Zsigmond, T. Soil moisture content and plant health monitoring under different inter-row cropping vineyard. Plant. Soil. 1–16. https://doi.org/10.1007/s11104-025-07612-2 (2025).
Zhong, S., Sun, Z. & Di, L. Characteristics of vegetation response to drought in the CONUS based on long-term remote sensing and meteorological data. Ecol. Ind. 127, 107767 (2021).
Kohzuma, K., Tamaki, M. & Hikosaka, K. Corrected photochemical reflectance index (PRI) is an effective tool for detecting environmental stresses in agricultural crops under light conditions. J. Plant. Res. 134, 683–694. https://doi.org/10.1007/s10265-021-01316-1 (2021).
Google Scholar
Yudina, L. et al. A light-induced decrease in the photochemical reflectance index (PRI) can be used to estimate the energy-dependent component of non-photochemical quenching under heat stress and soil drought in pea, wheat, and pumpkin. Photosynth. Res. 146, 175–187 (2020).
Google Scholar
D’Odorico, P. et al. Drone-based physiological index reveals long-term acclimation and drought stress responses in trees. Plant. Cell. Environ. 44, 3552–3570. https://doi.org/10.1111/pce.14177 (2021).
Google Scholar
Horel, Á. & Zsigmond, T. Plant growth and soil water content changes under different inter-row soil management methods in a sloping vineyard. Plants 12, 1549. https://doi.org/10.3390/plants12071549 (2023).
Google Scholar
Xue, J. & Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 1353691 (2017).
Fensholt, R., Sandholt, I. & Rasmussen, M. S. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens. Environ. 91, 490–507. https://doi.org/10.1016/j.rse.2004.04.009 (2004).
Google Scholar
Gitelson, A. A., Peng, Y. & Huemmrich, K. F. Relationship between fraction of radiation absorbed by photosynthesizing maize and soybean canopies and NDVI from remotely sensed data taken at close range and from MODIS 250 m resolution data. Remote Sens. Environ. 147, 108–120 (2014).
Google Scholar
Rondeaux, G., Steven, M. & Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 55, 95–107 (1996).
Google Scholar
Horel, Á., Bakacsi, Z., Vass, C. & Zsigmond, T. Inter-row soil management affecting soil moisture in non‐irrigated vineyard ecosystems: A meta‐analysis. Soil Use Manag. 40, e13159. https://doi.org/10.1111/sum.13159 (2024).
Google Scholar
Zalai, M., Bujtás, O., Sárospataki, M. & Dorner, Z. Grassy and herbaceous interrow cover crops in European vineyards: A review of their Short-Term effects on water management and regulating ecosystem services. Land 14, 1526 (2025).
Capello, G., Biddoccu, M., Ferraris, S. & Cavallo, E. Effects of tractor passes on hydrological and soil erosion processes in tilled and grassed vineyards. Water 11, 2118. https://doi.org/10.3390/w11102118 (2019).
Google Scholar
Guerra, J. G., Cabello, F., Fernández-Quintanilla, C., Peña, J. M. & Dorado, J. How weed management influence plant community composition, taxonomic diversity and crop yield: A long-term study in a mediterranean vineyard. Agric. Ecosyst. Environ. 326, 107816 (2022).
Google Scholar
Callesen, T. O. et al. Understanding carbon sequestration, allocation, and ecosystem storage in a grassed vineyard. Geoderma Reg. 34, e00674 (2023).
Wilson, T. G. et al. Relationships between soil water content, evapotranspiration, and irrigation measurements in a California drip-irrigated Pinot Noir vineyard. Agric. Water Manage. 237, 106186 (2020).
Costa, J., Egipto, R., Sánchez-Virosta, A., Lopes, C. & Chaves, M. Canopy and soil thermal patterns to support water and heat stress management in vineyards. Agric. Water Manage. 216, 484–496 (2019).
Liebhard, G. et al. Effects of vineyard inter-row management on soil physical properties and organic carbon in central European vineyards. Soil Use Manag. 40, e13101 (2024).
Pornaro, C. et al. Selection of inter-row herbaceous covers in a sloping, organic, non-irrigated vineyard. Plos One. 17, e0279759. https://doi.org/10.1371/journal.pone.0279759 (2022).
Google Scholar
Sun, L. et al. Daily mapping of 30 m LAI and NDVI for grape yield prediction in California vineyards. Remote Sens. 9, 317 (2017).
Google Scholar
Gamon, J. A., Kovalchuck, O., Wong, C. Y. S., Harris, A. & Garrity, S. R. Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors. Biogeosciences 12, 4149–4159. https://doi.org/10.5194/bg-12-4149-2015 (2015).
Google Scholar
Gamon, J. A. et al. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol. Appl. 5, 28–41. https://doi.org/10.2307/1942049 (1995).
Google Scholar
Sozzi, M., Kayad, A., Marinello, F., Taylor, J. & Tisseyre, B. Comparing vineyard imagery acquired from Sentinel-2 and unmanned aerial vehicle (UAV) platform. Oeno One. 54, 189–197 (2020).
Catania, P., Ferro, M. V., Orlando, S. & Vallone, M. Grapevine and cover crop spectral response to evaluate vineyard spatio-temporal variability. Sci. Hort. 339, 113844. https://doi.org/10.1016/j.scienta.2024.113844 (2025).
Google Scholar
van Leeuwen, W. J. D., Orr, B. J., Marsh, S. E. & Herrmann, S. M. Multi-sensor NDVI data continuity: uncertainties and implications for vegetation monitoring applications. Remote Sens. Environ. 100, 67–81. https://doi.org/10.1016/j.rse.2005.10.002 (2006).
Google Scholar
Misra, G., Cawkwell, F. & Wingler, A. Status of phenological research using Sentinel-2 data: A review. Remote Sens. 12. https://doi.org/10.3390/rs12172760 (2020).
Huang, L. et al. Combining random forest and XGBoost methods in detecting early and Mid-Term winter wheat Stripe rust using canopy level hyperspectral measurements. Agriculture 12, 74 (2022).
Google Scholar
Li, X., Jia, H. & Wang, L. Remote sensing monitoring of drought in Southwest China using random forest and eXtreme gradient boosting methods. Remote Sens. 15, 4840 (2023).
Google Scholar
Gyawali, A., Adhikari, H., Aalto, M. & Ranta, T. From simple linear regression to machine learning methods: canopy cover modelling of a young forest using planet data. Ecol. Inf. 82, 102706. https://doi.org/10.1016/j.ecoinf.2024.102706 (2024).
Google Scholar
Matese, A. & Di Gennaro, S. F. Beyond the traditional NDVI index as a key factor to mainstream the use of UAV in precision viticulture. Sci. Rep. 11, 2721. https://doi.org/10.1038/s41598-021-81652-3 (2021).
Google Scholar
European Environment Agency (EEA). CORINE Land Cover 2018 (Vector/Raster 100 m), Europe, 6-Yearly. (2018). https://doi.org/10.2909/71c95a07-e296-44fc-b22b-415f42acfdf0 Accessed 25 Aug 2021.
GIS Geographic Information System (Version 3.40.6) Open Source Geospatial Foundation. (2025).
IUSS Working Group WRB. (ed FAO) (International Union of Soil Sciences (IUSS), 2022).
León-Tavares, J. et al. Correction of directional effects in vegetation NDVI time-series. Remote Sens. 13, 1130 (2021).
Google Scholar
Shamrikova, E., Vanchikova, E., Kyzyurova, E. & Zhangurov, E. Methods for measuring organic carbon content in carbonate-containing soils: a review. Eurasian Soil. Sci. 57, 380–394 (2024).
Google Scholar
Loggenberg, K., Strever, A., Greyling, B. & Poona, N. Modelling water stress in a Shiraz vineyard using hyperspectral imaging and machine learning. Remote Sens. 10, 202 (2018).
Google Scholar
Taylor, J. A., Bates, T. R., Jakubowski, R. & Jones, H. Machine-Learning methods to identify key predictors of Site-Specific vineyard yield and vine size. Am. J. Enol. Viticult. 74, 1-11 (2023).
Chen, T. & Guestrin, C. Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. 785–794.
Li, X., Yuan, W. & Dong, W. A machine learning method for predicting vegetation indices in China. Remote Sens. 13, 1147 (2021).
Google Scholar
Ma, N. et al. Assessment of vegetation dynamics in Xinjiang using NDVI data and machine learning models from 2000 to 2023. Sustainability 17, 306 (2025).
Narmilan, A. et al. Predicting canopy chlorophyll content in sugarcane crops using machine learning algorithms and spectral vegetation indices derived from UAV multispectral imagery. Remote Sens. 14, 1140 (2022).
Google Scholar
Fornara, D. A. & Tilman, D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J. Ecol. 96, 314–322. https://doi.org/10.1111/j.1365-2745.2007.01345.x (2008).
Google Scholar
Van Der Krift, T. A. & Berendse, F. The effect of plant species on soil nitrogen mineralization. J. Ecol. 89, 555–561 (2001).
Google Scholar
Wang, R. et al. Seasonal variation in the NDVI–species richness relationship in a prairie grassland experiment (Cedar Creek). Remote Sens. 8, 128 (2016).
Google Scholar
Watzig, C. et al. Grassland cut detection based on Sentinel-2 time series to respond to the environmental and technical challenges of the Austrian fodder production for livestock feeding. Remote Sens. Environ. 292, 113577 (2023).
Schwieder, M. et al. Mapping grassland mowing events across Germany based on combined Sentinel-2 and Landsat 8 time series. Remote Sens. Environ. 269, 112795 (2022).
Pfitzner, K., Bartolo, R., Whiteside, T. & Loewensteiner, D. Observations and geoinformation. Int. J. Appl. Earth Obs. Geoinf. 112, 102870 (2022).
Hajdu, E. Viticulture of Hungary. Acta Agrar. Debreceniensis. 150, 175–182. https://doi.org/10.34101/actaagrar/150/1713 (2018).
Google Scholar
Cogato, A. et al. Evaluating the spectral and physiological responses of grapevines (Vitis vinifera L.) to heat and water stresses under different vineyard cooling and irrigation strategies. Agronomy 11, 1940 (2021).
Hillel, D. Fundamentals of Soil Physics (Academic, 2013).
Hubbard, S. S. et al. Estimation of soil classes and their relationship to grapevine Vigor in a Bordeaux vineyard: advancing the practical joint use of electromagnetic induction (EMI) and NDVI datasets for precision viticulture. Precision Agric. 22, 1353–1376 (2021).
Czigány, S. et al. Impact of agricultural land use types on soil moisture retention of loamy soils. Sustainability 15, 4925. https://doi.org/10.3390/su15064925 (2023).
Google Scholar
Thapa, S. et al. Use of NDVI for characterizing winter wheat response to water stress in a semi-arid environment. J. Crop Improv. 33, 633–648 (2019).
Google Scholar
Kandylakis, Z., Falagas, A., Karakizi, C. & Karantzalos, K. Water stress Estimation in vineyards from aerial SWIR and multispectral UAV data. Remote Sens. 12, 2499 (2020).
Google Scholar
Zhao, T., Stark, B., Chen, Y., Ray, A. L. & Doll, D. International Conference on Unmanned Aircraft Systems (ICUAS). 520–525 (IEEE, 2015).
Milazzo, F., Brocca, L. & Vanwalleghem, T. NDVI prediction of mediterranean permanent grasslands using soil moisture products. Agronomy 14, 1798 (2024).
Gao, B. C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266 (1996).
Google Scholar
Caturegli, L. et al. Effects of water stress on spectral reflectance of Bermudagrass. Sci. Rep. 10, 15055 (2020).
Google Scholar
Abubakar, M. A., Chanzy, A., Flamain, F. & Courault, D. Characterisation of grapevine canopy leaf area and inter-row management using Sentinel-2 time series. OENO One 57, 1-13 (2023).
Crusiol, L. et al. Strategies for monitoring within-field soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods. Precision Agric. 23, 1093–1123 (2022).
Lyu, H. et al. Using remote and proximal sensing data and vine Vigor parameters for non-destructive and rapid prediction of grape quality. Remote Sens. 15, 5412 (2023).
Google Scholar
Thanh, D. K., Ngoc, D. L., Dieu, H. D. & Tran, V. A. Comparison of random forest and extreme gradient boosting algorithms in land cover classification in Van Yen district, Yen Bai province, Vietnam. J. Hydro-Environ Res. 23, 50–59 (2025).