Refining grapevine vegetation status by utilizing grassland and remote sensing data

  • Pei, F. et al. Monitoring the vegetation activity in China using vegetation health indices. Agric. For. Meteorol. 248, 215–227 (2018).

    ADS 

    Google Scholar 

  • Horel, Á., Zsigmond, T., Molnár, S., Zagyva, I. & Bakacsi, Z. Long-term soil water content dynamics under different land uses in a small agricultural catchment. J. Hydrology Hydromechanics. 70, 284–294. https://doi.org/10.2478/johh-2022-0015 (2022).

    Article 
    CAS 

    Google Scholar 

  • Li, Y., Ye, W., Wang, M. & Yan, X. Climate change and drought: a risk assessment of crop-yield impacts. Climate Res. 39, 31–46 (2009).

    ADS 
    CAS 

    Google Scholar 

  • Palazzi, F., Biddoccu, M., Borgogno Mondino, E. C. & Cavallo, E. Use of remotely sensed data for the evaluation of inter-row cover intensity in vineyards. Remote Sens. 15, 41 (2022).

    ADS 

    Google Scholar 

  • Zsigmond, T., Braun, P., Mészáros, J., Waltner, I. & Horel, Á. Investigating plant response to soil characteristics and slope positions in a small catchment. Land 11, 774. https://doi.org/10.3390/land11060774 (2022).

    Article 

    Google Scholar 

  • Boiarskii, B. & Hasegawa, H. Comparison of NDVI and NDRE indices to detect differences in vegetation and chlorophyll content. J. Mech. Contin Math. Sci. 4, 20–29 (2019).

    Google Scholar 

  • Horel, Á., Cseresnyés, I., Zagyva, I. & Zsigmond, T. Soil moisture content and plant health monitoring under different inter-row cropping vineyard. Plant. Soil. 1–16. https://doi.org/10.1007/s11104-025-07612-2 (2025).

  • Zhong, S., Sun, Z. & Di, L. Characteristics of vegetation response to drought in the CONUS based on long-term remote sensing and meteorological data. Ecol. Ind. 127, 107767 (2021).

    Google Scholar 

  • Kohzuma, K., Tamaki, M. & Hikosaka, K. Corrected photochemical reflectance index (PRI) is an effective tool for detecting environmental stresses in agricultural crops under light conditions. J. Plant. Res. 134, 683–694. https://doi.org/10.1007/s10265-021-01316-1 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yudina, L. et al. A light-induced decrease in the photochemical reflectance index (PRI) can be used to estimate the energy-dependent component of non-photochemical quenching under heat stress and soil drought in pea, wheat, and pumpkin. Photosynth. Res. 146, 175–187 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • D’Odorico, P. et al. Drone-based physiological index reveals long-term acclimation and drought stress responses in trees. Plant. Cell. Environ. 44, 3552–3570. https://doi.org/10.1111/pce.14177 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horel, Á. & Zsigmond, T. Plant growth and soil water content changes under different inter-row soil management methods in a sloping vineyard. Plants 12, 1549. https://doi.org/10.3390/plants12071549 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xue, J. & Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 1353691 (2017).

    Google Scholar 

  • Fensholt, R., Sandholt, I. & Rasmussen, M. S. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens. Environ. 91, 490–507. https://doi.org/10.1016/j.rse.2004.04.009 (2004).

    Article 
    ADS 

    Google Scholar 

  • Gitelson, A. A., Peng, Y. & Huemmrich, K. F. Relationship between fraction of radiation absorbed by photosynthesizing maize and soybean canopies and NDVI from remotely sensed data taken at close range and from MODIS 250 m resolution data. Remote Sens. Environ. 147, 108–120 (2014).

    ADS 

    Google Scholar 

  • Rondeaux, G., Steven, M. & Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 55, 95–107 (1996).

    ADS 

    Google Scholar 

  • Horel, Á., Bakacsi, Z., Vass, C. & Zsigmond, T. Inter-row soil management affecting soil moisture in non‐irrigated vineyard ecosystems: A meta‐analysis. Soil Use Manag. 40, e13159. https://doi.org/10.1111/sum.13159 (2024).

    Article 

    Google Scholar 

  • Zalai, M., Bujtás, O., Sárospataki, M. & Dorner, Z. Grassy and herbaceous interrow cover crops in European vineyards: A review of their Short-Term effects on water management and regulating ecosystem services. Land 14, 1526 (2025).

    Google Scholar 

  • Capello, G., Biddoccu, M., Ferraris, S. & Cavallo, E. Effects of tractor passes on hydrological and soil erosion processes in tilled and grassed vineyards. Water 11, 2118. https://doi.org/10.3390/w11102118 (2019).

    Article 

    Google Scholar 

  • Guerra, J. G., Cabello, F., Fernández-Quintanilla, C., Peña, J. M. & Dorado, J. How weed management influence plant community composition, taxonomic diversity and crop yield: A long-term study in a mediterranean vineyard. Agric. Ecosyst. Environ. 326, 107816 (2022).

    CAS 

    Google Scholar 

  • Callesen, T. O. et al. Understanding carbon sequestration, allocation, and ecosystem storage in a grassed vineyard. Geoderma Reg. 34, e00674 (2023).

    Google Scholar 

  • Wilson, T. G. et al. Relationships between soil water content, evapotranspiration, and irrigation measurements in a California drip-irrigated Pinot Noir vineyard. Agric. Water Manage. 237, 106186 (2020).

    Google Scholar 

  • Costa, J., Egipto, R., Sánchez-Virosta, A., Lopes, C. & Chaves, M. Canopy and soil thermal patterns to support water and heat stress management in vineyards. Agric. Water Manage. 216, 484–496 (2019).

    Google Scholar 

  • Liebhard, G. et al. Effects of vineyard inter-row management on soil physical properties and organic carbon in central European vineyards. Soil Use Manag. 40, e13101 (2024).

    Google Scholar 

  • Pornaro, C. et al. Selection of inter-row herbaceous covers in a sloping, organic, non-irrigated vineyard. Plos One. 17, e0279759. https://doi.org/10.1371/journal.pone.0279759 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, L. et al. Daily mapping of 30 m LAI and NDVI for grape yield prediction in California vineyards. Remote Sens. 9, 317 (2017).

    ADS 

    Google Scholar 

  • Gamon, J. A., Kovalchuck, O., Wong, C. Y. S., Harris, A. & Garrity, S. R. Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors. Biogeosciences 12, 4149–4159. https://doi.org/10.5194/bg-12-4149-2015 (2015).

    Article 
    ADS 

    Google Scholar 

  • Gamon, J. A. et al. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecol. Appl. 5, 28–41. https://doi.org/10.2307/1942049 (1995).

    Article 

    Google Scholar 

  • Sozzi, M., Kayad, A., Marinello, F., Taylor, J. & Tisseyre, B. Comparing vineyard imagery acquired from Sentinel-2 and unmanned aerial vehicle (UAV) platform. Oeno One. 54, 189–197 (2020).

    Google Scholar 

  • Catania, P., Ferro, M. V., Orlando, S. & Vallone, M. Grapevine and cover crop spectral response to evaluate vineyard spatio-temporal variability. Sci. Hort. 339, 113844. https://doi.org/10.1016/j.scienta.2024.113844 (2025).

    Article 

    Google Scholar 

  • van Leeuwen, W. J. D., Orr, B. J., Marsh, S. E. & Herrmann, S. M. Multi-sensor NDVI data continuity: uncertainties and implications for vegetation monitoring applications. Remote Sens. Environ. 100, 67–81. https://doi.org/10.1016/j.rse.2005.10.002 (2006).

    Article 
    ADS 

    Google Scholar 

  • Misra, G., Cawkwell, F. & Wingler, A. Status of phenological research using Sentinel-2 data: A review. Remote Sens. 12. https://doi.org/10.3390/rs12172760 (2020).

  • Huang, L. et al. Combining random forest and XGBoost methods in detecting early and Mid-Term winter wheat Stripe rust using canopy level hyperspectral measurements. Agriculture 12, 74 (2022).

    CAS 

    Google Scholar 

  • Li, X., Jia, H. & Wang, L. Remote sensing monitoring of drought in Southwest China using random forest and eXtreme gradient boosting methods. Remote Sens. 15, 4840 (2023).

    ADS 

    Google Scholar 

  • Gyawali, A., Adhikari, H., Aalto, M. & Ranta, T. From simple linear regression to machine learning methods: canopy cover modelling of a young forest using planet data. Ecol. Inf. 82, 102706. https://doi.org/10.1016/j.ecoinf.2024.102706 (2024).

    Article 

    Google Scholar 

  • Matese, A. & Di Gennaro, S. F. Beyond the traditional NDVI index as a key factor to mainstream the use of UAV in precision viticulture. Sci. Rep. 11, 2721. https://doi.org/10.1038/s41598-021-81652-3 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • European Environment Agency (EEA). CORINE Land Cover 2018 (Vector/Raster 100 m), Europe, 6-Yearly. (2018). https://doi.org/10.2909/71c95a07-e296-44fc-b22b-415f42acfdf0 Accessed 25 Aug 2021.

  • GIS Geographic Information System (Version 3.40.6) Open Source Geospatial Foundation. (2025).

  • IUSS Working Group WRB. (ed FAO) (International Union of Soil Sciences (IUSS), 2022).

  • León-Tavares, J. et al. Correction of directional effects in vegetation NDVI time-series. Remote Sens. 13, 1130 (2021).

    ADS 

    Google Scholar 

  • Shamrikova, E., Vanchikova, E., Kyzyurova, E. & Zhangurov, E. Methods for measuring organic carbon content in carbonate-containing soils: a review. Eurasian Soil. Sci. 57, 380–394 (2024).

    ADS 
    CAS 

    Google Scholar 

  • Loggenberg, K., Strever, A., Greyling, B. & Poona, N. Modelling water stress in a Shiraz vineyard using hyperspectral imaging and machine learning. Remote Sens. 10, 202 (2018).

    ADS 

    Google Scholar 

  • Taylor, J. A., Bates, T. R., Jakubowski, R. & Jones, H. Machine-Learning methods to identify key predictors of Site-Specific vineyard yield and vine size. Am. J. Enol. Viticult. 74, 1-11 (2023).

  • Chen, T. & Guestrin, C. Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. 785–794.

  • Li, X., Yuan, W. & Dong, W. A machine learning method for predicting vegetation indices in China. Remote Sens. 13, 1147 (2021).

    ADS 

    Google Scholar 

  • Ma, N. et al. Assessment of vegetation dynamics in Xinjiang using NDVI data and machine learning models from 2000 to 2023. Sustainability 17, 306 (2025).

    Google Scholar 

  • Narmilan, A. et al. Predicting canopy chlorophyll content in sugarcane crops using machine learning algorithms and spectral vegetation indices derived from UAV multispectral imagery. Remote Sens. 14, 1140 (2022).

    ADS 

    Google Scholar 

  • Fornara, D. A. & Tilman, D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J. Ecol. 96, 314–322. https://doi.org/10.1111/j.1365-2745.2007.01345.x (2008).

    Article 
    CAS 

    Google Scholar 

  • Van Der Krift, T. A. & Berendse, F. The effect of plant species on soil nitrogen mineralization. J. Ecol. 89, 555–561 (2001).

    PubMed 

    Google Scholar 

  • Wang, R. et al. Seasonal variation in the NDVI–species richness relationship in a prairie grassland experiment (Cedar Creek). Remote Sens. 8, 128 (2016).

    ADS 

    Google Scholar 

  • Watzig, C. et al. Grassland cut detection based on Sentinel-2 time series to respond to the environmental and technical challenges of the Austrian fodder production for livestock feeding. Remote Sens. Environ. 292, 113577 (2023).

    Google Scholar 

  • Schwieder, M. et al. Mapping grassland mowing events across Germany based on combined Sentinel-2 and Landsat 8 time series. Remote Sens. Environ. 269, 112795 (2022).

    Google Scholar 

  • Pfitzner, K., Bartolo, R., Whiteside, T. & Loewensteiner, D. Observations and geoinformation. Int. J. Appl. Earth Obs. Geoinf. 112, 102870 (2022).

    Google Scholar 

  • Hajdu, E. Viticulture of Hungary. Acta Agrar. Debreceniensis. 150, 175–182. https://doi.org/10.34101/actaagrar/150/1713 (2018).

    Article 

    Google Scholar 

  • Cogato, A. et al. Evaluating the spectral and physiological responses of grapevines (Vitis vinifera L.) to heat and water stresses under different vineyard cooling and irrigation strategies. Agronomy 11, 1940 (2021).

    Google Scholar 

  • Hillel, D. Fundamentals of Soil Physics (Academic, 2013).

  • Hubbard, S. S. et al. Estimation of soil classes and their relationship to grapevine Vigor in a Bordeaux vineyard: advancing the practical joint use of electromagnetic induction (EMI) and NDVI datasets for precision viticulture. Precision Agric. 22, 1353–1376 (2021).

    Google Scholar 

  • Czigány, S. et al. Impact of agricultural land use types on soil moisture retention of loamy soils. Sustainability 15, 4925. https://doi.org/10.3390/su15064925 (2023).

    Article 

    Google Scholar 

  • Thapa, S. et al. Use of NDVI for characterizing winter wheat response to water stress in a semi-arid environment. J. Crop Improv. 33, 633–648 (2019).

    CAS 

    Google Scholar 

  • Kandylakis, Z., Falagas, A., Karakizi, C. & Karantzalos, K. Water stress Estimation in vineyards from aerial SWIR and multispectral UAV data. Remote Sens. 12, 2499 (2020).

    ADS 

    Google Scholar 

  • Zhao, T., Stark, B., Chen, Y., Ray, A. L. & Doll, D. International Conference on Unmanned Aircraft Systems (ICUAS). 520–525 (IEEE, 2015).

  • Milazzo, F., Brocca, L. & Vanwalleghem, T. NDVI prediction of mediterranean permanent grasslands using soil moisture products. Agronomy 14, 1798 (2024).

    Google Scholar 

  • Gao, B. C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266 (1996).

    ADS 

    Google Scholar 

  • Caturegli, L. et al. Effects of water stress on spectral reflectance of Bermudagrass. Sci. Rep. 10, 15055 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Abubakar, M. A., Chanzy, A., Flamain, F. & Courault, D. Characterisation of grapevine canopy leaf area and inter-row management using Sentinel-2 time series. OENO One 57, 1-13 (2023).

  • Crusiol, L. et al. Strategies for monitoring within-field soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods. Precision Agric. 23, 1093–1123 (2022).

    Google Scholar 

  • Lyu, H. et al. Using remote and proximal sensing data and vine Vigor parameters for non-destructive and rapid prediction of grape quality. Remote Sens. 15, 5412 (2023).

    ADS 

    Google Scholar 

  • Thanh, D. K., Ngoc, D. L., Dieu, H. D. & Tran, V. A. Comparison of random forest and extreme gradient boosting algorithms in land cover classification in Van Yen district, Yen Bai province, Vietnam. J. Hydro-Environ Res. 23, 50–59 (2025).

    Google Scholar 

  • Continue Reading