Ma, X., Edgecombe, G. D., Hou, X., Goral, T. & Strausfeld, N. J. Preservational pathways of corresponding brains of a cambrian euarthropod. Curr. Biol. 25, 2969–2975 (2015).
Tanaka, G., Hou, X., Ma, X., Edgecombe, G. D. & Strausfeld, N. J. Chelicerate neural ground pattern in a Cambrian great appendage arthropod. Nature 502, 364–367 (2013).
Google Scholar
Lan, T., Zhao, Y., Zhao, F., He, Y., Martinez, P. & Strausfeld, N. J. Leanchoiliidae reveals the ancestral organization of the stem euarthropod brain. Curr. Biol. 31, 4397–4404 (2021).
Strausfeld, N. J., Hou, X., Sayre, M. E. & Hirth, F. The lower Cambrian lobopodian Cardiodictyon resolves the origin of euarthropod brains. Science 378, 905–909 (2022).
Google Scholar
Bernot, J. P., Owen, C. I., Wolfe, J. M., Meland, M., Olesen, J. & Crandall, K. A. Major revisions in pancrustacean phylogeny and evidence of sensitivity to taxon sampling. Mol. Biol. Evol. 40, msad175 (2023).
Hou, X.-G. Two new arthropods from lower Cambrian, Chengjiang, eastern Yunnan. Acta Palaeontol. Sin. 26, 236–255 (1987).
Haug, J. T., Waloszek, D., Maas, A., Liu, Y. & Haug, C. Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian. Palaeontology 55, 369–399 (2012).
Ortega-Hernández, J. Homology of head sclerites in burgess shale euarthropods. Curr. Biol. 25, 1625−1631 (2015).
Schoenemann, B. & Clarkson, E. N. K. The median eyes of trilobites. Sci. Rep. 13, 3917 (2023).
Google Scholar
Reimann, R. & Richter, S. The nauplius eye complex in ‘conchostracans’ (Crustacea, Branchiopoda: Laevicaudata, Spinicaudata, Cyclestherida) and its phylogenetic implications. Arthr. Struct. Dev. 36, 408–419 (2007).
Nässel, D. R. & Hagberg, M. Ocellar interneurones in the blowfly Calliphora erythrocephala: morphology and central projections. Cell Tissue Res. 242, 417–426 (1985).
Steinmetz, P. R., Urbach, R., Posnien, N., Eriksson, J. et al. Six3 demarcates the anterior-most developing brain region in bilaterian animals. EvoDevo 1, 14 (2010).
Posnien, N., Koniszewski, N. D. B., Hein, H. J. & Bucher, G. Candidate gene screen in the red flour beetle Tribolium reveals six3 as ancient regulator of anterior median head and central complex development. PLOS Genet. 7, e1002416 (2011).
Domínguez-Cejudo, M. A. & Casares, F. Anteroposterior patterning of Drosophila ocelli requires an anti-repressor mechanism within the hh pathway mediated by the Six3 gene Optix. Development 142, 2801–2809 (2015).
Snodgrass, R. E. Comparative studies on the head of mandibulate Arthropods. Annal. Entomol. Soc. Am. 44, 2 (1951).
Strausfeld, N. J. et al. Arthropod eyes: The early Cambrian fossil record and divergent evolution of visual systems. Arthropod Struct. Dev. 45, 152–172 (2016).
Cohen, S. M. & Jürgens, G. Gap-like segmentation genes that mediate Drosophila head development. Nature 346, 482–485 (1990).
Google Scholar
Strausfeld, N. J. & Olea-Rowe, B. Convergent evolution of optic lobe neuropil in Pancrustacea. Arthr. Struct. Dev. 61, 1467–8039 (2021).
Zenon, M., Ryszard, C. & Verschure, P. F. M. J. Visual anticipation biases conscious decision making but not bottom-up visual processing. Front Psychol. 5, 1443 (2015).
Kirsch, R. & Richter, S. The nervous system of Leptodora kindtii (Branchiopoda, Cladocera) surveyed with confocal scanning microscopy (CLSM), including general remarks on the branchiopod neuromorphological ground pattern. Arthr. Struct. Dev. 36, 143–156 (2007).
Harzsch, S. & Glötzner, J. An immunohistochemical study on structure and development of the nervous system in the brine shrimp Artemia salina Linnaeus, 1758 (Branchiopoda, Anostraca) with remarks on the evolution of the arthropod brain. Arthr. Struct. Dev. 30, 251–270 (2002).
Harzsch, S. From stem cell to structure: neurogenesis in the cns of decapod crustaceans. In The Crustacean Nervous System. (ed. Wiese, K.) 417−432 (Springer, 2002).
Strausfeld, N. J., Wolff, G. H. & Sayre, M. E. Mushroom body evolution demonstrates homology and divergence across Pancrustacea. ELife 9, e52411 (2020).
Strausfeld, N. J. Arthropod Brains: Evolution, Functional Elegance, And Historical Significance, Vol. 848 (Harvard University Press, 2012).
Dohle, W. Are the insects terrestrial crustaceans? In: T. Deuve (ed) Origin of the Hexapoda. Ann. Soc. Entmol. Fr. 37, 85–103 (2001).
Rathore, S., Meece, M., Charlton-Perkins, M,. Cook, T. A. & Buschbeck E. K. Probing the conserved roles of cut in the development and function of optically different insect compound eyes. Front. Cell Dev. Bio. 11, 104620 (2023).
Charlton-Perkins, M. A., Friedrich, M. & Cook, T. A. Semper’s cells in the insect compound eye: Insights into ocular form and function. Dev. Biol. 479, 126–138 (2021).
Müller, C. H. G., Rosenberg, J., Richter, S. et al. The compound eye of Scutigera coleoptrata (Linnaeus, 1758) (Chilopoda: Notostigmophora): an ultrastructural reinvestigation that adds support to the Mandibulata concept. Zoomorphology 122, 191–209 (2003).
Sombke, A., & Müller, C. H. G. The visual system of myriapoda. In Distributed Vision (eds. Buschbeck, E. & Bok, M.) (Springer, 2023).
Strausfeld, N. J. & Andrew, D. R. A new view of insect-crustacean relationships I. Inferences from neural cladistics and comparative neuroanatomy. Arthropod Struct. Dev. 40, 276–88 (2011).
Strausfeld, N. J., Andrew, D. R. & Hirth, F. Cambrian origin of the arachnid brain. Curr. Biol. 35, 1–9 (2025).
Russell, D., Bicknell, C., Ortega-Hernández, J., Edgecombe, G. D., Gaines, R. R. & Paterson, J. R. Central nervous system of a 310-m.y.-old horseshoe crab: expanding the taphonomic window for nervous system preservation. Geology 49, 1381–1385 (2021).
Google Scholar
Swofford, D. L. PAUP*. Phylogenetic analysis using parsimony (*and Other Methods). Version 4. Sinauer associates, Sunderland, massachusetts. Evolution https://doi.org/10.1111/j.0014-3820.2002.tb00191.x (2003).
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. M. R. B. A. Y. E. S. 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Syst. Biol. 61, 539–542 (2012).
Liu, Y., Haug, J., Haug, C. et al. A 520 million-year-old chelicerate larva. Nat. Commun. 5, 4440 (2014).
Google Scholar
Briggs, D. E. G. & Collins, D. The arthropod Alalcomenaeus cambricus Simonetta, from the middle Cambrian Burgess Shale of British Columbia. Palaeontology 42, 953–977 (1999).
Haug, J. T., Briggs, D. E. & Haug, C. Morphology and function in the Cambrian Burgess Shale megacheiran arthropod Leanchoilia superlata and the application of a descriptive matrix. BMC Evol. Biol. 12, 162 (2012).
Chen, J., Waloszek, D. & Maas, A. A new ‘great-appendage’ arthropod from the Lower Cambrian of China and homology of chelicerate chelicerae and raptorial antero-ventral appendages. Lethaia 37, 3–20 (2004).
Schaeper, N. D., Pechmann, M., Damen, W. M. G., Prpic, N.-M., & Wimmer, E. A. Evolutionary plasticity of collier function in head development of diverse arthropods. Dev. Biol. 344, 363–376 (2010).
Mohler, J., Mahaffey, J. P., Deutsch, E. & Vani, K. Control of Drosophila head segment identity by the bZIP homeotic gene cnc. Development 121, 237–247 (1995).
Coulcher, J. F. & Telford, M. J. Cap’n’collar differentiates the mandible from the maxilla in the beetle Tribolium castaneum. EvoDevo 3, 25 (2012).
Sharma, P. P., Gupta, T., Schwager, E. E., Wheeler, W. C. & Extavour, C. G. Subdivision of arthropod cap-n-collar expression domains is restricted to Mandibulata. Evodevo 5, 3 (2014).
Pearson, J., Lemons, D. & McGinnis, W. Modulating Hox gene functions during animal body patterning. Nat. Rev. Genet. 6, 893–904 (2005).
Sombke, A. & Rosenberg, J. Myriapoda. In Structure and Evolution of Invertebrate Nervous Systems (eds. Schmidt-Rhaesa, A., Harzsch, S. & Purschke, G.) 478−491 (Oxford University Press, 2016).
Sharma, P. P. et al. A conserved genetic mechanism specifies deutocerebral appendage identity in insects and arachnids. Proc. R. Soc. B. 282, 20150698 (2015).
Setton, E. V. W. et al. Expression and function of spineless orthologs correlate with distal deutocerebral appendage morphology across Arthropoda. Dev. Biol. 430, 224–236 (2017).
Dahms, H.-U. Development of functional adaptation to clasping behaviour in harpacticoid copepods (Copepoda, Harpacticoida). Hydrobiologia 167/168, 505–513 (1988).
Andrew, D. R., Brown, S. M. & Strausfeld, N. J. The minute brain of the copepod Tigriopus californicus supports a complex ancestral ground pattern of the tetraconate cerebral nervous systems. J. Comp. Neurol. 520, 3446–3470 (2012).
Edgecombe, G. D., García–Bellído, D. C. & Paterson, J. R. A new leanchoiliid megacheiran arthropod from the lower Cambrian Emu Bay Shale, South Australia. Acta Palaeontol. Pol. 56, 385–400 (2011).
Cotton, T. J. & Braddy, S. J. The phylogeny of arachnomorph arthropods and the origin of the Chelicerata. Trans. R. Soc. Edinb.: Earth Sci. 94, 169–193 (2003).
Parry, L. A. et al. A pyritized Ordovician leanchoiliid arthropod. Curr. Biol. 34, 5578–5586 (2024).
Bergström, J. & Hou, X–G. Early Palaeozoic iamellipedian Arthropods. In Crustacea and Arthropod Relationships. Crustacean Issues (Koenemann, S. & Jenner R. A.) 73–93 (2005)
Budd, G. A palaeontological solution to the arthropod head problem. Nature 417, 271–275 (2002).
Google Scholar
Letunic, L. & Bork, P. Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acid Res. 52, 78–82 (2024).
Wolfe, J. M. & Ortega-Hernández J. Evolution: Oh, my Cambrian nerves. Curr. Biol. 31, R1132−R1135 (2021).
Melcher, C. & Pankratz, M. J. Candidate gustatory interneurons modulating feeding behavior in the Drosophila brain. PLoS Biol. 3, e305 (2005).