Effects of esketamine on electrophysiology and metabolic reprogramming in brain organoids: insights into antidepressant mechanisms

  • Zarate CA Jr, Singh JB, Quiroz JA, De Jesus G, Denicoff KK, Luckenbaugh DA, et al. A double-blind, placebo-controlled study of memantine in the treatment of major depression. Am J Psychiatry. 2006;163:153–5.

    PubMed 

    Google Scholar 

  • Fava M, Freeman MP, Flynn M, Judge H, Hoeppner BB, Cusin C, et al. Double-blind, placebo-controlled, dose-ranging trial of intravenous ketamine as adjunctive therapy in treatment-resistant depression (TRD). Mol Psychiatry. 2020;25:1592–603.

    CAS 
    PubMed 

    Google Scholar 

  • Hashimoto K, Zhao M, Zhu T, Wang X, Yang J. Ketamine and its two enantiomers in anesthesiology and psychiatry: a historical review and future directions. J Anesth Transl Med. 2024;3:65–75.

    Google Scholar 

  • Singh JB, Fedgchin M, Daly E, Xi L, Melman C, De Bruecker G, et al. Intravenous esketamine in adult treatment-resistant depression: a double-blind, double-randomization, placebo-controlled study. Biol Psychiatry. 2016;80:424–31.

    CAS 
    PubMed 

    Google Scholar 

  • Su T, Lu Y, Fu C, Geng Y, Chen Y. GluN2A mediates ketamine-induced rapid antidepressant-like responses. Nat Neurosci. 2023;26:1751–61.

    CAS 
    PubMed 

    Google Scholar 

  • Zorumski CF, Izumi Y, Mennerick S. Ketamine: NMDA receptors and beyond. J Neurosci. 2016;36:11158–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma S, Chen M, Jiang Y, Xiang X, Wang S, Wu Z, et al. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb. Nature. 2023;622:802–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amidfar M, Woelfer M, Réus GZ, Quevedo J, Walter M, Kim YK. The role of NMDA receptor in neurobiology and treatment of major depressive disorder: Evidence from translational research. Prog Neuropsychopharmacol Biol Psychiatry. 2019;94:109668.

    CAS 
    PubMed 

    Google Scholar 

  • Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature. 2018;554:317–22.

    CAS 
    PubMed 

    Google Scholar 

  • Cerniauskas I, Winterer J, de Jong JW, Lukacsovich D, Yang H, Khan F, et al. Chronic stress induces activity, synaptic, and transcriptional remodeling of the lateral habenula associated with deficits in motivated behaviors. Neuron. 2019;104:899–915.e898.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu H, Cui Y, Yang Y. Circuits and functions of the lateral habenula in health and in disease. Nat Rev Neurosci. 2020;21:277–95.

    CAS 
    PubMed 

    Google Scholar 

  • Yang C, Shirayama Y, Zhang JC, Ren Q, Yao W, Ma M, et al. R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry. 2015;5:e632.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533:481–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei Y, Chang L, Hashimoto K. Molecular mechanisms underlying the antidepressant actions of arketamine: beyond the NMDA receptor. Mol Psychiatry. 2022;27:559–73.

    CAS 
    PubMed 

    Google Scholar 

  • Yao W, Cao Q, Luo S, He L, Yang C, Chen J, et al. Microglial ERK-NRBP1-CREB-BDNF signaling in sustained antidepressant actions of (R)-ketamine. Mol Psychiatry. 2022;27:1618–29.

    CAS 
    PubMed 

    Google Scholar 

  • Lu K, Hong Y, Tao M, Shen L, Zheng Z, Fang K, et al. Depressive patient-derived GABA interneurons reveal abnormal neural activity associated with HTR2C. EMBO Mol Med. 2023;15:e16364.

    CAS 
    PubMed 

    Google Scholar 

  • Jiao J, Xu D, Kong Y, Cao Y, Wang L, Hong Y, et al. circFKBP8(5S,6)-encoded protein as a novel endogenous regulator in major depressive disorder by inhibiting glucocorticoid receptor nucleus translocation. Sci Bull. 2024;69:3826–31.

    CAS 

    Google Scholar 

  • Cardon I, Grobecker S, Jenne F, Jahner T, Rupprecht R, Milenkovic VM, et al. Serotonin effects on human iPSC-derived neural cell functions: from mitochondria to depression. Mol Psychiatry. 2024;29:2689–700.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li C, Fleck JS, Martins-Costa C, Burkard TR, Themann J, Stuempflen M, et al. Single-cell brain organoid screening identifies developmental defects in autism. Nature. 2023;621:373–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paulsen B, Velasco S, Kedaigle AJ, Pigoni M, Quadrato G, Deo AJ, et al. Autism genes converge on asynchronous development of shared neuron classes. Nature. 2022;602:268–73.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trudler D, Ghatak S, Bula M, Parker J, Talantova M, Luevanos M, et al. Dysregulation of miRNA expression and excitation in MEF2C autism patient hiPSC-neurons and cerebral organoids. Mol Psychiatry. 2025;30:1479–96.

    CAS 
    PubMed 

    Google Scholar 

  • Zushin PH, Mukherjee S, Wu JC. FDA Modernization Act 2.0: transitioning beyond animal models with human cells, organoids, and AI/ML-based approaches. J Clin Invest. 2023;133:e175824.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Laperle AH, Sances S, Yucer N, Dardov VJ, Garcia VJ, Ho R, et al. iPSC modeling of young-onset Parkinson’s disease reveals a molecular signature of disease and novel therapeutic candidates. Nat Med. 2020;26:289–99.

    CAS 
    PubMed 

    Google Scholar 

  • Fitzgerald MQ, Chu T, Puppo F, Blanch R, Chillón M, Subramaniam S, et al. Generation of ‘semi-guided’ cortical organoids with complex neural oscillations. Nat Protoc. 2024;19:2712–38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 2014;9:2329–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun H, Zhang F, Wang Y, Wang Z, Zhang S, Xu Y, et al. Generation of induced pluripotent stem cell line (ZZUi011-A) from urine sample of a normal human. Stem Cell Res. 2018;29:28–31.

    CAS 
    PubMed 

    Google Scholar 

  • Xiao C, Zhou J, Li A, Zhang L, Zhu X, Zhou J, et al. Esketamine vs midazolam in boosting the efficacy of oral antidepressants for major depressive disorder: a pilot randomized clinical trial. JAMA Netw Open. 2023;6:e2328817.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou Y, Lan X, Wang C, Zhang F, Liu H, Fu L, et al. Effect of repeated intravenous esketamine on adolescents with major depressive disorder and suicidal ideation: a randomized active-placebo-controlled trial. J Am Acad Child Adolesc Psychiatry. 2024;63:507–18.

    PubMed 

    Google Scholar 

  • Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–87.e3529.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16:1289–96.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ianevski A, Giri AK, Aittokallio T. Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data. Nat Commun. 2022;13:1246.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morabito S, Reese F, Rahimzadeh N, Miyoshi E, Swarup V. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data. Cell Rep Methods. 2023;3:100498.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, et al. Gene set knowledge discovery with enrichr. Curr Protoc. 2021;1:e90.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinforma. 2013;14:7.

    Google Scholar 

  • Kanton S, Boyle MJ, He Z, Santel M, Weigert A, Sanchís-Calleja F, et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature. 2019;574:418–22.

    CAS 
    PubMed 

    Google Scholar 

  • Velasco S, Kedaigle AJ, Simmons SK, Nash A, Rocha M, Quadrato G, et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature. 2019;570:523–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yoon SJ, Elahi LS, Pașca AM, Marton RM, Gordon A, Revah O, et al. Reliability of human cortical organoid generation. Nat Methods. 2019;16:75–78.

    CAS 
    PubMed 

    Google Scholar 

  • Lüscher C, Malenka RC. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol. 2012;4:a005710.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Abbas AK, Villers A, Ris L. Temporal phases of long-term potentiation (LTP): myth or fact? Rev Neurosci. 2015;26:507–46.

    CAS 
    PubMed 

    Google Scholar 

  • Chiu CQ, Martenson JS, Yamazaki M, Natsume R, Sakimura K, Tomita S, et al. Input-specific NMDAR-dependent potentiation of dendritic GABAergic inhibition. Neuron. 2018;97:368–77.e363.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zanos P, Brown KA, Georgiou P, Yuan P, Zarate CA Jr, Thompson SM, et al. NMDA receptor activation-dependent antidepressant-relevant behavioral and synaptic actions of ketamine. J Neurosci. 2023;43:1038–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Google Scholar 

  • Esketamine hydrochloride for treatment-resistant depression. Aust Prescr 2022; 45: 27-28. https://doi.org/10.18773/austprescr.2021.061

  • De Rossi P, Harde E, Dupuis JP, Martin L, Chounlamountri N, Bardin M, et al. A critical role for VEGF and VEGFR2 in NMDA receptor synaptic function and fear-related behavior. Mol Psychiatry. 2016;21:1768–80.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dale-Nagle EA, Satriotomo I, Mitchell GS. Spinal vascular endothelial growth factor induces phrenic motor facilitation via extracellular signal-regulated kinase and Akt signaling. J Neurosci. 2011;31:7682–90.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Daly EJ, Singh JB, Fedgchin M, Cooper K, Lim P, Shelton RC, et al. Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry. 2018;75:139–48.

    PubMed 

    Google Scholar 

  • Tang Y, Liu Y, Zhou H, Lu H, Zhang Y, Hua J, et al. Esketamine is neuroprotective against traumatic brain injury through its modulation of autophagy and oxidative stress via AMPK/mTOR-dependent TFEB nuclear translocation. Exp Neurol. 2023;366:114436.

    CAS 
    PubMed 

    Google Scholar 

  • Lopez JP, Lücken MD, Brivio E, Karamihalev S, Kos A, De Donno C, et al. Ketamine exerts its sustained antidepressant effects via cell-type-specific regulation of Kcnq2. Neuron. 2022;110:2283–98.e2289.

    CAS 
    PubMed 

    Google Scholar 

  • Robinson B, Gu Q, Kanungo J. Antidepressant actions of ketamine: potential role of L-type calcium channels. Chem Res Toxicol. 2021;34:1198–207.

    CAS 
    PubMed 

    Google Scholar 

  • Cui Y, Yang Y, Ni Z, Dong Y, Cai G, Foncelle A, et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature. 2018;554:323–7.

    CAS 
    PubMed 

    Google Scholar 

  • Li M, Demenescu LR, Colic L, Metzger CD, Heinze HJ, Steiner J, et al. Temporal dynamics of antidepressant ketamine effects on glutamine cycling follow regional fingerprints of AMPA and NMDA receptor densities. Neuropsychopharmacology. 2017;42:1201–9.

    CAS 
    PubMed 

    Google Scholar 

  • Traxler L, Herdy JR, Stefanoni D, Eichhorner S, Pelucchi S, Szücs A, et al. Warburg-like metabolic transformation underlies neuronal degeneration in sporadic Alzheimer’s disease. Cell Metab. 2022;34:1248–63.e1246.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qi J, Wu Q, Zhu X, Zhang S, Chen X, Chen W, et al. Propofol attenuates the adhesion of tumor and endothelial cells through inhibiting glycolysis in human umbilical vein endothelial cells. Acta Biochim Biophys Sin. 2019;51:1114–22.

    CAS 
    PubMed 

    Google Scholar 

  • Chang L, Wei Y, Qu Y, Zhao M, Zhou X, Long Y, et al. Role of oxidative phosphorylation in the antidepressant effects of arketamine via the vagus nerve-dependent spleen-brain axis. Neurobiol Dis. 2024;199:106573.

    CAS 
    PubMed 

    Google Scholar 

  • Pérez-Liébana I, Juaristi I, González-Sánchez P, González-Moreno L, Rial E, Podunavac M, et al. A Ca(2+)-dependent mechanism boosting glycolysis and OXPHOS by activating aralar-malate-aspartate shuttle, upon neuronal stimulation. J Neurosci. 2022;42:3879–95.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rueda CB, Llorente-Folch I, Traba J, Amigo I, Gonzalez-Sanchez P, Contreras L, et al. Glutamate excitotoxicity and Ca2+-regulation of respiration: role of the Ca2+ activated mitochondrial transporters (CaMCs). Biochim Biophys Acta. 2016;1857:1158–66.

    CAS 
    PubMed 

    Google Scholar 

  • Gerhard DM, Pothula S, Liu RJ, Wu M, Li XY, Girgenti MJ, et al. GABA interneurons are the cellular trigger for ketamine’s rapid antidepressant actions. J Clin Invest. 2020;130:1336–49.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao T, Li C, Wei W, Zhang H, Ma D, Song X, et al. Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat. Sci Rep. 2016;6:26865.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang X, Zhao J, Chang T, Wang Q, Liu W, Gao L. Ketamine exerts neurotoxic effects on the offspring of pregnant rats via the Wnt/β-catenin pathway. Env Sci Pollut Res Int. 2020;27:305–14.

    CAS 

    Google Scholar 

  • Du Z, Zang Z, Luo J, Liu T, Yang L, Cai Y, et al. Chronic exposure to (2 R,6 R)-hydroxynorketamine induces developmental neurotoxicity in hESC-derived cerebral organoids. J Hazard Mater. 2023;453:131379.

    CAS 
    PubMed 

    Google Scholar 

  • Zhou X, Lv X, Zhang L, Yan J, Hu R, Sun Y, et al. Ketamine promotes the neural differentiation of mouse embryonic stem cells by activating mTOR. Mol Med Rep. 2020;21:2443–51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell. 2011;144:810–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saab AS, Tzvetavona ID, Trevisiol A, Baltan S, Dibaj P, Kusch K, et al. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron. 2016;91:119–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walden EL, Li S. Metabolic reprogramming of glial cells as a new target for central nervous system axon regeneration. Neural Regen Res. 2022;17:997–8.

    CAS 
    PubMed 

    Google Scholar 

  • Chang HX, Dai W, Bao JH, Li JF, Zhang JG, Li YF. Essential role of microglia in the fast antidepressant action of ketamine and hypidone hydrochloride (YL-0919). Front Pharmacol. 2023;14:1122541.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wray NR, Pergadia ML, Blackwood DH, Penninx BW, Gordon SD, Nyholt DR, et al. Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned. Mol Psychiatry. 2012;17:36–48.

    CAS 
    PubMed 

    Google Scholar 

  • Flint J. The genetic basis of major depressive disorder. Mol Psychiatry. 2023;28:2254–65.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. Electronic address: andrew.mcintosh@ed.ac.uk; Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. Trans-ancestry genome-wide study of depression identifies 697 associations implicating cell types and pharmacotherapies. Cell. 2025;188:640–52.e649.

    Google Scholar 

  • Continue Reading