Rubino F, Cummings DE, Eckel RH, Cohen RV, Wilding JP, Brown WA, Stanford FC, Batterham RL, Farooqi IS, Farpour-Lambert NJ. Definition and diagnostic criteria of clinical obesity. Lancet Diabetes Endocrinol. 2025.
Stern JH, Rutkowski JM, Scherer PE. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metabol. 2016;23(5):770–84.
Google Scholar
Ouchi N, Walsh K. Adiponectin as an anti-inflammatory factor. Clin Chim Acta. 2007;380(1–2):24–30.
Google Scholar
Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001;7(8):947–53.
Google Scholar
Myers MG, Cowley MA, Münzberg H. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol. 2008;70(1):537–56.
Google Scholar
Katsiki N, Mikhailidis DP, Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol Sin. 2018;39(7):1176–88.
Google Scholar
Choi M-K, Nam SJ, Ji H-Y, Park MJ, Choi J-S, Song I-S. Comparative pharmacokinetics and pharmacodynamics of a novel sodium-glucose cotransporter 2 inhibitor, DWP16001, with Dapagliflozin and Ipragliflozin. Pharmaceutics. 2020;12(3):268.
Google Scholar
Lyu YS, Hong S, Lee SE, Cho BY, Park C-Y. Efficacy and safety of Enavogliflozin vs. dapagliflozin as add-on therapy in patients with type 2 diabetes mellitus based on renal function: A pooled analysis of two randomized controlled trials. Cardiovasc Diabetol. 2024;23(1):71.
Google Scholar
Yang YS, Min KW, Park SO, Kim KS, Yu JM, Hong EG, Cho SR, Won KC, Kim YH, Oh S. Efficacy and safety of monotherapy with Enavogliflozin in Korean patients with type 2 diabetes mellitus: results of a 12-week, multicentre, randomized, double‐blind, placebo‐controlled, phase 2 trial. Diabetes Obes Metabolism 2023, 25(8):2096-2104.
Szekeres Z, Sandor B, Bognar Z, Ramadan FH, Palfi A, Bodis B, Toth K, Szabados E. Clinical study of metabolic parameters, leptin and the SGLT2 inhibitor empagliflozin among patients with obesity and type 2 diabetes. Int J Mol Sci. 2023;24(5):4405.
Google Scholar
Aso Y, Sagara M, Niitani T, Kato K, Iijima T, Tomaru T, Jojima T, Usui I. Serum high-molecular-weight adiponectin and response to Dapagliflozin in patients with type 2 diabetes and non-alcoholic fatty liver disease. J Investig Med. 2021;69(7):1324–9.
Google Scholar
Han KA, Kim YH, Kim DM, Lee BW, Chon S, Sohn TS, Jeong IK, Hong EG, Son JW, Nah JJ, et al. Efficacy and safety of Enavogliflozin versus Dapagliflozin as Add-on to Metformin in patients with type 2 diabetes mellitus: A 24-Week, Double-Blind, randomized trial. Diabetes Metab J. 2023;47(6):796–807.
Google Scholar
Balistreri CR, Caruso C, Candore G. The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediat Inflamm. 2010;2010(1):802078.
Amitani M, Asakawa A, Amitani H, Inui A. The role of leptin in the control of insulin-glucose axis. Front NeuroSci. 2013;7:51.
Google Scholar
Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, Sánchez-Margalet V. Role of leptin in inflammation and vice versa. Int J Mol Sci. 2020;21(16):5887.
Google Scholar
Wu P, Wen W, Li J, Xu J, Zhao M, Chen H, Sun J. Systematic review and Meta-Analysis of randomized controlled trials on the effect of SGLT2 inhibitor on blood leptin and adiponectin level in patients with type 2 diabetes. Horm Metab Res. 2019;51(8):487–94.
Google Scholar
Breder I, Wolf VLW, Soares AA, de Carvalho LSF, Kimura-Medorima ST, Cintra RM, Barreto J, Munhoz DB, Cunha JS, Bonilha I. Dapagliflozin reduces adiposity and increases adiponectin in patients with type 2 diabetes and atherosclerotic disease at short-term: an active-controlled randomised trial. Diabetes Metab 2022, 48(2):101304.
Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423(6941):762–9.
Google Scholar
Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, Gojobori T, Isenovic ER. Leptin and obesity: role and clinical implication. Front Endocrinol. 2021;12:585887.
Park H-K, Ahima RS. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism. 2015;64(1):24–34.
Google Scholar
Abella V, Scotece M, Conde J, Pino J, Gonzalez-Gay MA, Gomez-Reino JJ, Mera A, Lago F, Gómez R, Gualillo O. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat Rev Rheumatol. 2017;13(2):100–9.
Google Scholar
Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, Mari A, Pieber TR, Muscelli E. Shift to fatty substrate utilization in response to sodium–glucose cotransporter 2 Inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016;65(5):1190–5.
Google Scholar
Verma S, Rawat S, Ho KL, Wagg CS, Zhang L, Teoh H, Dyck JE, Uddin GM, Oudit GY, Mayoux E. Empagliflozin increases cardiac energy production in diabetes: novel translational insights into the heart failure benefits of SGLT2 inhibitors. JACC: Basic Translational Sci. 2018;3(5):575–87.
Lopaschuk GD, Dyck JR. Ketones and the cardiovascular system. Nat Cardiovasc Res. 2023;2(5):425–37.
Google Scholar
Li K, Wang W-h, Wu J-b. Xiao W-h: Β-hydroxybutyrate: a crucial therapeutic target for diverse liver diseases. Biomed Pharmacother. 2023;165:115191.
Google Scholar
Park S, Kim DS, Daily JW. Central infusion of ketone bodies modulates body weight and hepatic insulin sensitivity by modifying hypothalamic leptin and insulin signaling pathways in type 2 diabetic rats. Brain Res. 2011;1401:95–103.
Google Scholar
Kim J-H, Kim DK, Choi W-G, Ji H-Y, Choi J-S, Song I-S, Lee S, Lee HS. In vitro metabolism of DWP16001, a novel sodium-glucose cotransporter 2 inhibitor, in human and animal hepatocytes. Pharmaceutics. 2020;12(9):865.
Google Scholar
Hwang JG, Lee S, Huh W, Han J, Oh J, Jang IJ, Yu KS. Dose-dependent glucosuria of DWP16001, a novel selective sodium–glucose cotransporter‐2 inhibitor, in healthy subjects. Br J Clin Pharmacol. 2022;88(9):4100–10.
Google Scholar
Pang M, Jeon SY, Choi M-K, Jeon J-H, Ji H-Y, Choi J-S, Song I-S. Pharmacokinetics and tissue distribution of Enavogliflozin in mice and rats. Pharmaceutics. 2022;14(6):1210.
Google Scholar
Fadini GP, Bonora BM, Zatti G, Vitturi N, Iori E, Marescotti MC, Albiero M, Avogaro A. Effects of the SGLT2 inhibitor Dapagliflozin on HDL cholesterol, particle size, and cholesterol efflux capacity in patients with type 2 diabetes: a randomized placebo-controlled trial. Cardiovasc Diabetol. 2017;16(1):42.
Google Scholar
Li W-C, Hsiao K-Y, Chen I-C, Chang Y-C, Wang S-H, Wu K-H. Serum leptin is associated with cardiometabolic risk and predicts metabolic syndrome in Taiwanese adults. Cardiovasc Diabetol. 2011;10(1):36.
Google Scholar
Söderberg S, Ahren B, Jansson JH, Johnson O, Hallmans G, Asplund K, Olsson T. Leptin is associated with increased risk of myocardial infarction. J Intern Med. 1999;246(4):409–18.
Google Scholar
Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.
Google Scholar
Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.
Google Scholar
Neal B, Perkovic V, Mahaffey KW, De Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.
Google Scholar
Andrade-Oliveira V, Câmara NO, Moraes-Vieira PM. Adipokines as drug targets in diabetes and underlying disturbances. J Diabetes Res 2015;2015:681612.
Google Scholar
Vavruch C, Länne T, Fredrikson M, Lindström T, Östgren CJ, Nystrom FH. Serum leptin levels are independently related to the incidence of ischemic heart disease in a prospective study of patients with type 2 diabetes. Cardiovasc Diabetol. 2015;14:1–8.
Google Scholar
Morioka T, Emoto M, Yamazaki Y, Kawano N, Imamura S, Numaguchi R, Urata H, Motoyama K, Mori K, Fukumoto S. Leptin is associated with vascular endothelial function in overweight patients with type 2 diabetes. Cardiovasc Diabetol. 2014;13:1–9.
Puurunen V-P, Kiviniemi A, Lepojärvi S, Piira O-P, Hedberg P, Junttila J, Ukkola O, Huikuri H. Leptin predicts short-term major adverse cardiac events in patients with coronary artery disease. Ann Med. 2017;49(5):448–54.
Google Scholar
Bickel C, Schnabel RB, Zeller T, Lackner KJ, Rupprecht HJ, Blankenberg S, Sinning C, Westermann D. Predictors of leptin concentration and association with cardiovascular risk in patients with coronary artery disease: results from the athero gene study. Biomarkers. 2017;22(3–4):210–8.
Google Scholar
Tsai J-P, Wang J-H, Chen M-L, Yang C-F, Chen Y-C, Hsu B-G. Association of serum leptin levels with central arterial stiffness in coronary artery disease patients. BMC Cardiovasc Disord. 2016;16:1–7.
Google Scholar
Morciano C, Gugliandolo S, Capece U, Di Giuseppe G, Mezza T, Ciccarelli G, Soldovieri L, Brunetti M, Avolio A, Splendore A. SGLT2 Inhibition and adipose tissue metabolism: current outlook and perspectives. Cardiovasc Diabetol. 2024;23(1):449.
Google Scholar
Xu L, Ota T. Emerging roles of SGLT2 inhibitors in obesity and insulin resistance: focus on fat Browning and macrophage polarization. Adipocyte. 2018;7(2):121–8.
Google Scholar
Després J-P, Golay A, Sjöström L. Effects of Rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med. 2005;353(20):2121–34.
Google Scholar